

Antriebssystem SD2S

Hardwarebeschreibung

Copyright

Originalbetriebsanleitung, Copyright © 2022 SIEB & MEYER AG

Alle Rechte vorbehalten.

Diese Anleitung darf nur mit einer ausdrücklichen schriftlichen Genehmigung der SIEB & MEYER AG kopiert werden. Das gilt auch für Auszüge.

Marken

Alle in dieser Anleitung aufgeführten Produkt-, Schrift- und Firmennamen und Logos sind gegebenenfalls Marken oder eingetragene Marken der jeweiligen Firmen.

SIEB & MEYER weltweit

Bei Fragen zu unseren Produkten oder technischen Rückfragen wenden Sie sich bitte an uns.

SIEB & MEYER AG Auf dem Schmaarkamp 21 21339 Lüneburg Deutschland

Tel.: +49 4131 203 0 Fax: +49 4131 203 2000 info@sieb-meyer.de http://www.sieb-meyer.de

SIEB & MEYER Shenzhen Trading Co. Ltd. Room A208 2/F, Internet Innovation and Creation Services Base Building (2), No.126, Wanxia road, Shekou, Nanshan district, Shenzhen City, 518067

P.R. China

Tel.: +86 755 2681 1417 / +86 755 2681 2487

Fax: +86 755 2681 2967 info@sieb-meyer.cn http://www.sieb-meyer.cn

SIEB & MEYER Asia Co. Ltd. 5 FI, No. 578, Sec. 1 Min-Sheng N. Road Kwei-Shan Hsiang Guishan Dist., Taoyuan City 33393 Taiwan

Tel.: +886 3 311 5560 Fax: +886 3 322 1224 info@sieb-meyer.tw

1	Über dieses Handbuch	
1.1	Darstellung der Warnhinweise	
1.2	Abkürzungen	<mark>7</mark>
2	Allgemeine Informationen	<mark>9</mark>
3	Sicherheitshinweise	10
3.1	Normen und Richtlinien	10
3.2	Arbeiten am Gerät	<mark>11</mark>
3.3	Bestimmungsgemäße Verwendung	
3.4	Vernünftigerweise vorhersehbare Fehlanwendung	
3.5	Transport und Einlagerung	
3.6	Aufstellung	
3.7	Elektrischer Anschluss	
3.8	Betrieb	
3.9 3.10	Wartung	
3.10 3.11	EntsorgungGewährleistung	
	3	
4 4.1	EMV-gerechter Geräteaufbau Leitungsgebundene und feldgebundene Störaussendung Kategorie C3	
5	Antriebsverstärker SD2S	
5.1	Blockschaltbilder SD2S	
5.2	Typenschild	
5.3 5.4	GerätebezeichnungFunktionsübersicht der Gerätevarianten	
6	Gerätevarianten SD2S	_
6.1	Kompaktgerät 0362x40xx(A) / 0362120xx	
6.1.1 6.1.2	GehäuseabmessungenTechnische Daten	
6.1.2.1	Einspeisung 230 VAC	
6.1.2.2	Einspeisung 480 VAC	
6.1.3	Steckerplatzierung	32
6.2	Kompaktgerät 0362x41xx(A) / 0362121xx	
6.2.1	Gehäuseabmessungen	
6.2.2	Technische Daten	
6.2.2.1 6.2.2.2	Einspeisung 230 VACEinspeisung 480 VAC	
6.2.3	Steckerplatzierung.	
6.3	Kompaktgerät 0362x42DC	
6.3.1	Gehäuseabmessungen	
6.3.2	Technische Daten	
6.3.3	Steckerplatzierung	46
6.4	Kompaktgerät 0362x42EC	48
6.4.1	Gehäuseabmessungen	49
6.4.2	Technische Daten	
6.4.3	Steckerplatzierung	
6.5	Kompaktgerät 0362x43xx	
6.5.1	Gehäuseabmessungen	
6.5.2	Technische Daten	
6.5.3	Steckerplatzierung	
6.6 6.6.1	Kompaktgerät 0362144xx	
6.6.2	Gehäuseabmessungen Technische Daten	
6.6.3	Steckerplatzierung.	
6.7	Kompaktgerät 0362x45xx	
6.7.1	Gehäuseabmessungen	
	•	

Inhaltsverzeichnis

6.7.2	recnnische Daten	
6.7.3	Steckerplatzierung	66
6.8	Kompaktgerät 0362x46xx	
6.8.1	Gehäuseabmessungen	
6.8.2	Technische Daten	
6.8.3	Steckerplatzierung	
6.9	Antriebsverstärker 0362147xx	
6.9.1	Gehäuseabmessungen	
6.9.2	Technische Daten	
6.9.3		
	Steckerplatzierung	
6.10	Kompaktgerät 0362x48xx	
6.10.1	Gerätevariante 0362x48MF	
6.10.2	Gerätevariante 0362x48OF	
6.10.3	Gehäuseabmessungen	
6.10.3.1 6.10.3.2	Gerätevariante 0362x48MF	
6.10.3.2	Gerätevariante 0362x48OF	
	Technische Daten	
6.10.5 6.10.5.1	SteckerplatzierungGerätevariante 0362x48MF	
6.10.5.1	Gerätevariante 0362x46MF	
0.10.5.2	Geratevariante 0002x4001	
7	Montage	98
7.1	Rückwandmontage	
7.1	Wasserkühlung (0362x48OF)	
7.2.1		
1.2.1	Anschluss des Kühlaggregats	98
8	Anschlussbelegung	101
_	Alischiussbelegung	
8.1	Bedienung der Klemmenanschlüsse	
8.1.1	Federkraftanschluss	
8.1.2	Click & Lock-Verriegelung (STCL-Stecker)	
8.1.3	Push-in-Technik	
8.2	ID-Schalter (Adresswahlschalter)	
8.3	X6 – Encoder 0	
8.4	X7 - Encoder 1 / Encoderemulation	
8.5	X10 - Safety (STO)	
8.6	X14 – USB	
8.7	X15 - Digitale Ausgänge	104
8.7.1	Digitale Ausgänge – SERVO / VECTOR	105
8.7.2	Digitale Ausgänge – HSPWM, HSBLOCK/FPAM, HSPAM/UF	106
8.8	X16 – Digitale Eingänge	107
8.8.1	Digitale Eingänge – SERVO / VECTOR	108
8.8.2	Digitale Eingänge – HSPWM, HSBLOCK/FPAM, HSPAM/UF	109
8.9	X17 - Motorfeedback	110
8.10	X18 – Analog-Schnittstelle	112
8.11	X19 - COM1/Bedienteil	
8.12	X22A - Motoranschluss	
8.13	X26/ X27 – SERVOLINK 4	
8.13.1	Konfektionierung von Lichtleiterkabeln mit Steckverbinder	
8.14	X28 - Einspeisung	
8.15	X40 - Einspeisung	
8.16	X41 – Externer Ballastwiderstand	
8.17	X41 – Externer BallastwiderstalldX42 – Motoranschluss	
8.18		
	X43 – 24 V / Safety (STO)	
8.19	X44 – Einspeisung	
8.20	X45 – Motoranschluss	
8.21	X46 – Einspeisung	
8.22	X47 – Motoranschluss	
8.23	X48 – Einspeisung	
8.24	X49 - Motoranschluss	
8.25	X55 – Fehlerbus	123

8.26 8.27	X56 – ZwischenkreisX57 – Motoranschluss	
8.28	X63 – Externer Ballastwiderstand	
8.29	X64/X65 - EtherCAT	
9	Anschlussbeispiele	1 <mark>27</mark>
9.1	X6, X7 – Inkrementalgeber mit TTL-Signalen	
9.2	X7 - Geberemulation	1 <mark>2</mark> 8
9.3	X10/ X43 – Sicherheitsschaltung (STO)	129
9.3.1	Beschaltung mit OSSD	
9.3.2	Beschaltung ohne OSSD	
9.4	X15 – Digitale Ausgänge / NAMUR-Sensor / PULSE IN / Digitale Feldplatt	
0.4.1	GMR	
9.4.1 9.4.2	Digitale AusgängeNAMUR-Sensor	
9.4.2	PULSE IN 24 V	
9.4.4	Digitale Feldplatte / GMR	
9.4.5	PULSE (Drehzahlimpulse)	
9.5	X16/17 – Digitale Eingänge	
9.6	X17 – Motorfeedback	
9.6.1	Resolver	
9.6.2	Inkrementalgeber mit sinusförmigen Signalen (1 Vss)	
9.6.3	Linearer Hall-Geber (1 V ss)	
9.6.4	EnDat 2.1 mit sinusförmigen Signalen (1 V SS)	137
9.6.5	Hiperface mit sinusförmigen Signalen	138
9.6.6	Hall-Geber 12 V	
9.6.7	Hall-Geber 5,3 V	
9.6.8	Feldplatten	
9.6.9	Inkrementalgeber mit TTL-Signalen (5,3 V)	
9.6.10	Inkrementalgeber 12 V	
9.6.11	PULSE IN 5 V	
9.6.12 9.6.13	RENISHAW BiSS C-Mode (unidirektional)	
9.0.13	MotortemperaturfühlerX18 – Analoge Ein-/Ausgänge	
9.7.1	Analoge Ausgänge	
9.7.1	Analoge Eingänge	
9.8	X19 – Busanbindung	
9.8.1	COM1 – RS232-Schnittstellen	
9.8.2	CAN-Bus	
9.9	X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen	
9.10	Schirmung des Motorkabels	
9.11	X26/X27 – SERVOLINK	152
9.12	X28 - Einspeisung 0362121xC/ 0362x41xC(A)/ 0362x42xx/ 0362x43xx	
9.13	X41/X63 – Externer Ballastwiderstand	
9.14	X55 – Fehlerbus	
9.15	X64/X65 – EtherCAT	
9.16	Gehäuseerdung	155
10	Statusanzeige und Fehlermeldungen	156
10.1	LED-Statusanzeige: EtherCAT-Verbindung	
10.2	7-Segment-Anzeige	
10.2.1	Liste der Betriebszustände	
10.2.2	Liste der Antriebsfehlermeldungen	
10.2.3	Liste der Warnmeldungen	
10.2.4	Meldungen der Schnellhaltefunktionen	163
11	Allgemeine Hinweise zur Verdrahtung	164
11.1	Netzanschluss	
11.1	Netzdrosseln	
11.1.1	NG(ZU10335III	104

Inhaltsverzeichnis

11.2 11.2.1	MotorkabelMotorkabel	
11.2.2	Kommunikationskabel	
11.2.3	Kabel für die Rotorlageerkennung	
11.2.4	Leitungen für den externen Ballastwiderstand	
12	Elektrische Leistungsauslegung	169
12.1	Komponenten	
12.1.1	Endstufe	
12.1.2	Netzteil	
12.1.3	Motor	
12.2	Leistungsaufnahme eines Antriebs	
13	Sicherheitsschaltung / Anlaufsperre (STO)	173
13.1	Funktionsweise der Anlaufsperre	
13.2	Beispielverdrahtung	
13.3	Anforderungen der Normen	
13.4	Ablauf der Anlaufsperre	
14	Anhang	179
A	Spezifikationen der Antriebsfunktionen	
В	Spezifikationen der Gerätefirmware	
B.1	Firmware für SD2S mit festem Zwischenkreis.	
B.2	Firmware für SD2S mit geregeltem Zwischenkreis	
С	Anschlussprinzip	
C.1	Verdrahtungsbeispiel 0362120xx, 0362121xx	
C.2	Verdrahtungsbeispiel 0362x40xx(A), 0362x41xx(A)	190
C.3	Verdrahtungsbeispiel 0362x42xx, 0362x43xx (Besonderheiten der Einspeisung) 191
C.4	Verdrahtungsbeispiel 0362144xx bis 0362x48xx	192
D	Netzabsicherung	193
E	Herstellernachweis	194
E.1	SIEB & MEYER-Zubehör	
E.1.1	Anschlüsse der Baureihe SD2S	
E.1.2 F.1.3	Bedienteil Ringkern für Motorkabel	
E.1.4	Netzfilter für Umrichter-/Leistungselektronik.	
	Netzfilter der TDK & EPCOS Gruppe	195
E.1.5	Netzdrosseln	
E.1.6	USB>RS232/485 Konverter 050201	
E.2 E.2.1	Phoenix ContactÜberspannungsschutz FLASHTRAB	
E.2.1	Schirmanschlussklemmen	
E.3	Toshiba-Anschlüsse für Lichtwellenleiter.	
E.4	WAGO Kontakttechnik	
E.4.1	Schirmanschlussklemmen	
E.4.2	Träger mit Ableitfuß	198
15	Index	199

1 Über dieses Handbuch

Dieses Kapitel enthält Hinweise zu Symbolen, Signalwörtern und Abkürzungen, die in diesem Handbuch verwendet werden.

Hinweis

Weiterführende Dokumentation finden Sie im Downloadbereich der SIEB & MEYER-Internetseite unter http://www.sieb-meyer.de/downloads.html.

1.1 Darstellung der Warnhinweise

In diesem Handbuch werden folgende Warnhinweise verwendet. Je nach Gefährdungsgrad werden folgende Gefahrenstufen unterschieden:

A GEFAHR

Akute Verletzungsgefahr

Unmittelbare Gefahr, die tödliche, schwere oder irreversible Verletzungen zur Folge haben kann.

→ Beachten Sie im Handbuch die Hinweise zur Vermeidung der Gefahr.

A WARNUNG

Verletzungsgefahr

Gefährliche Situation, die tödliche, schwere oder irreversible Verletzungen zur Folge haben kann.

→ Beachten Sie im Handbuch die Hinweise zur Vermeidung der Gefahr.

A VORSICHT

Leichte Verletzungsgefahr

Gefährliche Situation, die leichtere Verletzungen oder Sachschaden zur Folge haben kann.

→ Beachten Sie im Handbuch die Hinweise zur Vermeidung der Gefahr.

ACHTUNG

Achtung

Gefährliche Situation, die Sachschaden zur Folge haben kann.

→ Beachten Sie im Handbuch die Hinweise zur Vermeidung der Gefahr.

1.2 Abkürzungen

FPAM Fluss-Pulsamplitudenmodulation (engl.: <u>flux pulse amplitude modulation</u>)

HSBLOCK Hochgeschwindigkeits-Blockkommutierung (engl.: high-speed block com-

mutation)

HSPAM Hochgeschwindigkeits-Pulsamplitudenmodulation (engl.: high-speed pul-

se amplitude modulation)

Über dieses Handbuch

HSPWM Hochgeschwindigkeits-Pulsweitenmodulation (engl.: high-speed pulse

width modulation)

HW <u>H</u>ard<u>w</u>are

n.c. nicht beschaltet (engl.: <u>n</u>ot <u>c</u>onnected)

PAM <u>Pulsamplitudenmodulation</u>

PWM <u>Pulsweitenmodulation</u>

SERVO Servoregelung

SVC sensorlose Vektorregelung (engl.: <u>sensorless vector control</u>)

UF U/f-Kennlinie

UVLO Unterspannungsabschaltung (engl.: undervoltage-lockout)

VCC Versorgungsspannung (engl.: voltage at the common collector)

VECTOR Vektorregelung

2 Allgemeine Informationen

Dieses Handbuch beschreibt die Antriebssysteme der Serie SD2S. Mit Hilfe dieser Geräte können hochdynamische Servomotoren sowie synchrone und asynchrone Hochfrequenzspindeln betrieben werden.

Die Geräte verfügen über Schnittstellen zu verschiedenen Gebersystemen, so dass Motoren mit Resolver-, SinCos-, EnDat-, Hall-, linearem Hall-, Inkremental- und Feldplatten-Gebern angetrieben werden können. Es werden auch geberlose Motorsysteme mit unterschiedlichen Steuerungsverfahren anwendungsspezifisch unterstützt. Zudem können rotierende und lineare Motoren betrieben werden, wodurch die Variantenvielfalt für den Maschinenhersteller reduziert wird.

Für Echtzeitanforderungen stehen Geräte mit einem optionalen EtherCAT-Slave-Anschluss zur Verfügung.

Dieses Handbuch enthält die folgenden Informationen:

- Sicherheits- und Anwendungshinweise
- ► Hinweise zur elektromagnetischen Verträglichkeit
- Gerätebeschreibung (Blockschaltbild, Typenschild, Gerätebezeichnung)
- ► Technische Daten, Maßzeichnungen
- Steckerbelegungen
- Anschlusspläne
- Status- und Fehlermeldungen
- Allgemeine Verdrahtung (Kabel- und Leitungsquerschnitte)
- ▶ Externe Absicherungen, Ballastschaltung

Dieses Handbuch richtet sich mit folgenden Anforderungen an das Fachpersonal der Maschinenhersteller:

Transport:

nur durch Fachpersonal mit Kenntnissen in der Behandlung elektrostatisch gefähr-

deter Bauelemente

Installation:

nur durch Fachleute mit elektrotechnischer Ausbildung

Inbetriebnahme:

nur durch Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik / Antriebstechnik

Hinweis

Informationen zur Inbetriebnahme und Parametrierung des digitalen Antriebsverstärkers finden Sie in der Bedienungsanleitung der Software *drivemaster2*.

Hinweis

Weiterführende Dokumentation finden Sie im Downloadbereich der SIEB & MEYER-Internetseite unter http://www.sieb-meyer.de/downloads.html.

3 Sicherheitshinweise

Diese Sicherheitshinweise enthalten wichtige Informationen für Ihre Sicherheit, die Sie bei der Installation und während des Betriebs von SIEB & MEYER-Geräten beachten müssen. Lesen Sie die Hinweise aufmerksam durch und bewahren Sie sie für später auf.

Beachten Sie außerdem weitere Sicherheitshinweise in der Produktdokumentation zu Ihrem Gerät.

3.1 Normen und Richtlinien

SIEB & MEYER Geräte erfüllen die Bestimmungen folgender Normen und Richtlinien:

- Niederspannungsrichtlinie 2014/35/EU:
 EG-Konformitätserklärung, DIN EN 61800-5-1
- ► EMV-Richtlinie 2014/30/EU: EG-Herstellererklärung, DIN EN 61800-3
- Maschinenrichtlinie 2006/42/EG:
 EG-Herstellererklärung, DIN EN 61800-5-2 (Sicherheitsfunktionen)

Hinweis

SIEB & MEYER Frequenzumrichter und Servoverstärker fallen nicht unter die Ökodesign-Verordnung (EU) 2019/1781 für Motoren und Frequenzumrichter und der begleitenden Änderung (EU) 2021/341, da diese nicht für den Betrieb der in der Verordnung definierten 50/60-Hz-Standardmotoren konzipiert sind.

Hinweis

SIEB & MEYER Produkte sind keine Produkte im Sinne der EG-Maschinenrichtlinie. Die bestimmungsgemäße Verwendung von SIEB & MEYER Geräten in Maschinen oder Anlagen ist solange untersagt, bis der Maschinen- oder Anlagenbauer die CE-Konformität der gesamten Maschine oder Anlage bestätigt.

Hinweis

Bei Änderungen am Gerät, sowohl an der Mechanik als auch an der Elektronik, erlischt die EG-Richtlinienkonformität und somit die **C**-Kennzeichnung.

3.2 Arbeiten am Gerät

A WARNUNG

Qualifiziertes Fachpersonal

- Zur Vermeidung schwerer Verletzungen und Sachschäden dürfen alle Arbeiten zur Installation, Inbetriebnahme und Instandhaltung ausschließlich von qualifiziertem Fachpersonal durchgeführt werden! Der Installateur von Einspeisesystemen muss darüber hinaus vom örtlichen VNB (Verteilungsnetzbetreiber) zugelassen sein.
- Qualifiziertes Fachpersonal im Sinne dieser Sicherheits- und Anwendungshinweise sind Personen, die mit der Aufstellung, Montage, Inbetriebnahme und dem Betrieb des Produktes vertraut sind und die für ihre Tätigkeit über entsprechende Qualifikationen verfügen. Die Normen DIN VDE 0100 und DIN VDE 0110 sowie nationale Unfallverhütungsvorschriften sind zu beachten!
- → Darüber hinaus müssen bei der Installation von Einspeisesystemen alle anwendbaren Vorschriften sowie spezielle Sicherheitsbestimmungen und technische Anschlussbedingungen des örtlichen VNB eingehalten werden.

A GEFAHR

Die Gefahr schwerer Sach- und Personenschäden besteht bei:

- unzulässigem Entfernen der Abdeckungen
- unzulässigem Einsatz bzw. nicht bestimmungsgemäßer Verwendung
- falscher Installation oder Bedienung
- → Achten Sie auf entsprechende Hinweise in der Produktdokumentation zu Ihrem Gerät.

A WARNUNG

Gefahr von Personen- und Sachschäden durch unzulässige Änderungen

→ Nehmen Sie Änderungen am und im Gerät nur nach vorheriger Absprache mit SIEB & MEYER vor.

Alle am Gerät angebrachten Informationen und Hinweise wie z. B. Sicherheits- und Gefahrenhinweise sowie technische Daten (Typenschild) sind:

- nicht zu entfernen
- nicht zu beschädigen
- in einem lesbaren Zustand zu halten (keine Abdeckungen, Übermalungen o.ä.)

3.3 Bestimmungsgemäße Verwendung

Das Gerät darf nur entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt werden. Beachten Sie entsprechende Hinweise zum Einsatz des Geräts in der Produkt-dokumentation.

Das Gerät ist für die Verwendung durch den OEM/Endanwender in einem geschlossenen Gehäuse zur Einhaltung des Verschmutzungsgrades 2 bzw. entsprechender Umweltbedingungen bestimmt. Das bedeutet, dass während des Betriebs keine leitfähige Verschmutzung und keine Feuchtigkeit auftreten darf.

SIEB & MEYER Produkte sind **nicht** für den Einsatz in explosionsgefährdeten Bereichen (ATEX-Zonen) ohne passendes Gehäuse geeignet.

Begriffsbestimmungen gemäß DIN EN 61800

Vor einer Inbetriebnahme ist sicherzustellen, dass von der Maschine keine Gefahr ausgeht (z. B. unkontrollierte Bewegungen). Die Konformität mit den Sicherheitsnormen DIN EN 60204-1 und DIN EN 61800-5-1 muss festgestellt sein.

Die Einhaltung der durch die Gesetzgebung für die elektromagnetische Verträglichkeit (EMV) geforderten Grenzwerte liegt in der Verantwortung des Herstellers der Anlage oder Maschine. SIEB & MEYER-Produkte sind so konstruiert, dass unter Beachtung der an den Maschinenhersteller ausgehändigten EMV-Informationen, ein Betrieb im industriellen Bereich möglich ist.

SIEB & MEYER führt im eigenen EMV-Labor Überprüfungen aller Produkte durch und gewährleistet damit, dass die Produkte bei sachgerechtem Einbau den geforderten Normkonformitäten entsprechen.

Abweichungen vom in der Produktdokumentation beschriebenen Aufbau und der Installation sowie der Anleitung "EMV-gerechter Geräteaufbau" bedeuten, dass der Hersteller der Anlage oder Maschine selbst neue Messungen veranlassen muss, um der Gesetzeslage zu entsprechen.

SIEB & MEYER-Geräte erfüllen die Anforderungen der Niederspannungsrichtlinie 2014/35/EU. Die harmonisierten Normen der Reihe DIN EN 50178 und DIN EN 60204-1 in Verbindung mit den Normen DIN EN 60947 und DIN EN 61800-5-1 werden konsequent angewendet.

Technische Daten und Angaben über Anschlussbedingungen sind der Dokumentation des entsprechenden Produkts zu entnehmen.

Netzfilter

Durch geeignete Filtermaßnahmen bei bestimmungsgemäßem Einsatz im industriellen Bereich sind SIEB & MEYER-Geräte konform zur EMV-Richtlinie 2014/30/EU im Sinne der EMV-Produktnorm (PDS) DIN EN 61800-3.

Der Einsatz von Netzfiltern hilft, folgende Ziele zu erreichen:

- ► Störfestigkeit. Das elektronische System wird vor hochfrequenten Störgrößen geschützt, die über das Netzkabel eindringen können.
- Abstrahlschutz. Hochfrequente Störgrößen werden auf ein gesetzlich zulässiges Maß reduziert. Damit wird ein Einwirken der Störungen auf benachbarte Baugruppen und benachbarte Geräte unterbunden.
- ► Produkte, die nicht mit einem Netzfilter ausgestattet sind, müssen mit einem vorgeschalteten Netzfilter betrieben werden.
- Beim Einsatz von SIEB & MEYER-Geräten im Wohnbereich, in Geschäfts- und Gewerbebereichen sowie Kleinbetrieben müssen zusätzliche Filtermaßnahmen getroffen werden.

Ausführliche Informationen finden Sie in der Dokumentation "EMV-gerechter Geräteaufbau", Kapitel "EMV-Produktnorm DIN EN 61800-3 für PDS".

Hinweis

Hinweise, ob Ihr Gerät mit einem integrierten Netzfilter ausgestattet ist, finden Sie in der Produktdokumentation Ihres Geräts. Ausführliche Informationen zum Einsatz und zur Installation von Netzfiltern finden Sie in der Dokumentation "EMV-gerechter Geräteaufbau".

3.4 Vernünftigerweise vorhersehbare Fehlanwendung

Die Maschinenrichtlinie definiert eine "vernünftigerweise vorhersehbarer Fehlanwendung" als "Die Verwendung einer Maschine in einer laut Betriebsanleitung nicht beabsichtigten Weise, die sich jedoch aus leicht absehbarem menschlichen Verhalten ergeben kann."

SIEB & MEYER Produkte sind keine Produkte im Sinne der EG-Maschinenrichtlinie.

Der Maschinenhersteller muss beim Bau und der Konstruktion der Maschine und der Erstellung der Betriebsanleitung dafür Sorge tragen, neben der bestimmungsgemäßen Verwendung der Maschine auch jede vernünftigerweise vorhersehbare Fehlanwendung der Maschine in Betracht zu ziehen.

Zur Vermeidung von Verletzungen und Sachschäden gilt jede Verwendung, Installation und Inbetriebnahme von SIEB & MEYER Produkten von Nicht-Fachleuten, welche die zulässigen Angaben in den Technischen Daten der Produktdokumentation (hohe Spannungen, Temperaturen etc.) überschreitet, als nicht bestimmungsgemäß und ist somit verboten.

Achten Sie auf Sicherheitshinweise auf dem Gerät und in der Produktdokumentation.

3.5 Transport und Einlagerung

Stellen Sie sicher, dass das Gerät nicht unzulässig beansprucht wird. Insbesondere sind folgende Punkte zu nennen:

- ► Schützen Sie das Gerät vor mechanischen Beschädigungen. Eine einmalige Schockbelastung darf 40 m/s² nicht überschreiten.
- ► Sorgen Sie für ausreichenden Schutz des Geräts vor Verschmutzung und Feuchtigkeit.
 - Speziell bei **Lichtleiteranschlüssen mit Staubschutz** muss sichergestellt werden, dass der **Staubschutz während des Transports des Geräts aufgesteckt** ist. Andernfalls ist eine Wiederinbetriebnahme eventuell nicht möglich.
- Vermeiden Sie die Berührung elektronischer Bauelemente.

Die folgenden Klimabedingungen gelten für die Lagerung. Wenn notwendig, müssen entsprechende Maßnahmen ergriffen werden, um diese Klimabedingungen einzuhalten (Installation von Heizsystemen/Klimaanlagen etc.):

- ▶ Der Lagerort muss sauber (möglichst staubfrei), trocken und gut belüftet sein.
- Eine Lagerung im Freien ist nicht zulässig.
- ► Die Lagertemperatur muss im Bereich -25 °C bis +55 °C (-13 °F bis +131 °F) liegen. Sie darf kurzzeitig +70 °C (+158 °F) betragen.
- ▶ Die relative Luftfeuchtigkeit am Lagerort muss zwischen 5 % und 75 % liegen (keine Betauung).
- Plötzliche Änderungen der Temperatur und Luftfeuchtigkeit sollten vermieden werden
- Geräte dürfen während des Transports und der Einlagerung nicht gestapelt werden.

Die maximale Lagerdauer beträgt 2 Jahre. Nach dieser Zeit weisen Elektrolytkondensatoren einen extrem hohen Leckstrom auf und müssen neu formiert werden. Dazu wird die Betriebsspannung über einen 1-k Ω -Reihenwiderstand über einen Zeitraum von 1 Stunde angelegt. Erfragen Sie die genaue Vorgehensweise beim SIEB & MEYER-Service.

3.6 Aufstellung

ACHTUNG

Beschädigung elektrostatisch gefährdeter Bauelemente durch unsachgemäße Behandlung

→ Vermeiden Sie die Berührung elektronischer Bauelemente.

Hinweis

Beachten Sie spezielle Montagehinweise für Ihr Gerät.

Mechanische Bedingungen für die Errichtung der Anlage gemäß DIN EN 61800-2:

"Schwingungen müssen innerhalb der Grenzwerte nach IEC 60721-3-3, Klasse 3M2, bleiben, die als bestimmungsgemäß für ortsfeste Einrichtungen angesehen werden."

Frequenz [Hz]	Amplitude [mm]	Beschleunigung [m/s²]
2 ≤ f < 9	1,5	nicht anwendbar
9 ≤ <i>f</i> < 200	nicht anwendbar	5

Tab. 1: Schwingungsgrenzen der Anlage

"Schwingungen jenseits dieser Grenzwerte oder Anwendung auf nicht ortsfeste Ausrüstungen werden als **außergewöhnliche mechanische Bedingung** angesehen."

Betriebsbedingungen:

Die folgenden Vorgaben sind für die Aufstellung und den Betrieb des Geräts zu berücksichtigen. Werden diese Vorgaben nicht eingehalten, gilt dies als **außergewöhnliche Betriebsbedingung**:

- ▶ Das Gerät ist nach DIN EN 61800-2 für den Verschmutzungsgrad 2 ausgelegt. Das bedeutet, dass während des Betriebs keine leitfähige Verschmutzung auftreten darf.
- Geräte, die ausschließlich luftgekühlt sind, können bis zu einer Höhe von 1000 m (3281 ft) über NN maximal belastet werden. Bei einem Betrieb über 1000 m (3281 ft) über NN muss die Auslastung pro 100 m (328 ft) um 1,5 % reduziert werden.
 - Die maximale Aufstellhöhe beträgt 2000 m (6562 ft) über NN für IT-Netze und 3000 m (9843 ft) über NN für symmetrisch geerdete TN- und TT-Netze.
- Das Gerät muss am Aufstellungsort vor schädlichen Abgasen, Öldampf und Salzluft geschützt sein.
- ▶ Die Umgebungsluft darf keine aggressiven, schleifenden, elektrisch leitfähigen oder leicht entzündlichen Stoffe enthalten und muss staubfrei sein.
- ► Die zulässige relative Luftfeuchtigkeit während des Betriebs beträgt maximal 85 % (keine Betauung).

- ▶ Die zulässige Umgebungstemperatur für den Betrieb beträgt +5 °C bis +40 °C (+41 °F bis +104 °F). Extreme oder plötzliche Änderungen der Temperatur sollten vermieden werden.
 - Für Geräte, die in Umgebungstemperaturen über +40 °C (+104 °F) eingesetzt werden dürfen (siehe technische Daten), muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5 % pro 1 °C. Anmerkung: F=C×9/5+32; C=(F-32)×5/9
 - Geräte mit Frontfolien: Die Frontfolien dürfen nicht dauerhaft direktem Sonnenlicht ausgesetzt werden. Bei hoher Luftfeuchtigkeit (>80 %) darf die Umgebungstemperatur +40 °C (+104 °F) nicht übersteigen. Die Folien dürfen nicht in Verbindung mit Benzylalkohol oder Methylenchlorid gebracht werden.
- ► Es muss gewährleistet sein, dass die Belüftungselemente des Geräts frei und offen sind, damit die Luftzirkulation nicht behindert wird.

3.7 Elektrischer Anschluss

A GEFAHR

Gefahr schwerer Personenschäden durch berührungsempfindliche Spannungen

Nach dem Ausschalten elektrischer Geräte können je nach Gerät berührungsempfindliche Spannungen von bis zu 4 Minuten auftreten. Bauartbedingt längere Entladezeiten entnehmen Sie der Produktdokumentation Ihres Geräts.

- → Führen Sie alle Arbeiten am und im Gerät nur im ausgeschalteten Zustand, bei getrennter Netzverbindung und bei vollständig entladenem DC-Bus aus.
- Berühren Sie nach dem Ausschalten keine spannungsführenden Bauteile der Geräte.
- → Beachten Sie die VDE-Richtlinien und die geltenden Unfallverhütungsvorschriften (z. B. VBG 1 und VBG 4).

A GEFAHR

Gefahr schwerer Personenschäden durch unsachgemäße Erdung

Bei nicht sachgemäßer Erdung der Anlage können gefährliche Körperströme auftreten.

→ Führen Sie alle Erdungsmaßnahmen entsprechend der Hinweise in der Produktdokumentation Ihres Geräts aus.

Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen (z. B. Leitungsquerschnitte, Absicherungen und Schutzleiteranbindungen beachten).

Hinweis

SIEB & MEYER-Geräte sind für den Anschluss an symmetrisch geerdete TN-Netze konzipiert. Für den Anschluss an TN-Netze und andere Netze beachten Sie die Hinweise in der Dokumentation "EMV-gerechter Geräteaufbau" bzw. den darin enthaltenen Abschnitt "Anschluss an verschiedene Netzformen".

Hinweise für die EMV-gerechte Installation (z. B. Schirmung, Erdung, Verlegung der Leitungen) befinden sich in den technischen Handbüchern Ihres Geräts (nur für Maschinenhersteller). Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Herstellers der Anlage oder Maschine.

- 1. Sichern Sie die Netzeinspeisung über einen Sicherungsautomaten mit Zwangsführung für jede Netzphase. Beachten Sie, dass die Netzzuleitung grundsätzlich erst nach Beendigung der Arbeiten eingeschaltet werden darf!
- 2. Stellen Sie vor dem ersten Einschalten des Geräts sicher, dass die angeschlossene Maschine keine unkontrollierten Bewegungen ausführen kann.
- 3. Schließen Sie kapazitive Lasten niemals an die Ausgangsphasen der Servoverstärker und der Frequenzumrichter an.
- Vermeiden Sie Kabelschleifen. Komplettgeräte sind an dem vorgesehenen PE-Anschluss für die Netzzuleitung und Einschubgeräte nur an der vorgesehenen Erdungsschraube zu erden.

A GEFAHR

Gefährliche Spannungen

Bei Verwendung von Filtern entstehen auf dem Schutzleiter (PE) Ableitströme, die im Fall eines Fehlers wesentlich größer als die Nennwerte werden können. Zum Schutz vor gefährlichen Spannungen müssen Filter daher vor dem Einschalten geerdet werden. Der Einsatz eines FI-Schutzschalters ist unter Umständen nicht möglich. Bei Ableitströmen ≥3,5 mA sind nach DIN EN 61800-5-1 / DIN EN 60204-1 folgende Maßnahmen erforderlich:

- → Versehen Sie das elektronische Betriebsmittel mit einem festen Anschluss ohne Steckverbinder und bringen Sie einen entsprechenden Warnhinweis auf dem Gerät an. Dieser ist auch in die Dokumentation des Gerätes einzufügen.
- → Verwenden Sie einen Schutzleiter mit einem Leiterquerschnitt von mindestens 10 mm² oder
- → verlegen Sie über getrennte Klemmen einen zweiten Schutzleiter elektrisch parallel zum ersten Schutzleiter.

Betrieb mit Fehlerstrom-Schutzschalter (FI/RCD)

Hinweis

Für den Betrieb mit FI-Schutzschalter (RCD) berücksichtigen Sie die Hinweise in der Beschreibung "EMV-gerechter Geräteaufbau", Kapitel "Sicherheitstechnische Aspekte, FI-Schalter (RCD)". Beachten Sie auch die Norm DIN EN 60204-1, Abschnitt 8: Zusätzliche Anforderungen an die elektrische Ausrüstung mit Erdableitströmen größer als 10 mA.

3.8 Betrieb

A WARNUNG

Gefahr schwerer Personenschäden durch bewegende Maschinenteile

Während des Betriebs einer Anlage mit offenen Türen oder entfernten Abdeckungen besteht die Gefahr schwerer Personenschäden durch bewegende Maschinenteile.

→ Halten Sie Türen während des Betriebs geschlossen und entfernen Sie keine Abdeckungen.

A WARNUNG

Gefahr von Personen- und Sachschäden durch herumfliegende Teile

Bei nicht angezogenen Befestigungsschrauben der Frontplatten und Gehäuseteile besteht die Gefahr von Personen- und Sachschäden.

→ Stellen Sie vor der Inbetriebnahme der Anlage sicher, dass alle Befestigungsschrauben fest angezogen sind.

A WARNUNG

Verbrennungsgefahr durch heiße Oberflächen

Während des Betriebs können die Geräte ihrer Schutzart entsprechend heiße Oberflächen besitzen. Dies gilt insbesondere für Belüftungsein-/auslässe.

Bei Geräten mit Bedieneinheit darf während des Betriebs nur die Bedieneinheit berührt werden.

Bei Verwendung von Ferritringen können Temperaturen in einigen Fällen 80 °C überschreiten.

- → Verwenden Sie nur Leitungen, die für Temperaturen über 90 °C vorgesehen sind. Dies entspricht der Entflammbarkeitsklasse UL 94V-0, RTI 105 °C.
- → Achten Sie auf entsprechende Hinweise im Handbuch.

Anlagen, in die Servoverstärker und Frequenzumrichter eingebaut sind, müssen ggf. mit zusätzlichen Schutzeinrichtungen gemäß der jeweils gültigen Sicherheitsbestimmungen (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw.) ausgerüstet werden.

3.9 Wartung

Das Gerät ist den Umwelteinflüssen entsprechend regelmäßig auf Sauberkeit und Funktionalität zu überprüfen. Das gilt besonders für vorhandene Lüfter.

3.10 Entsorgung

Hinweis

Beachten Sie bei der Entsorgung von Verpackungsmaterial, Altbatterien und irreparablen Geräten die jeweils gültigen landespezifischen Abfallbeseitigungsgesetze.

SIEB & MEYER-Produkte erfüllen die Bestimmungen folgender Richtlinie:

▶ 2011/65/EU (EU-Richtlinie RoHS 2 zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten)

Die Grenzwerte der Norm 2011/65/EU für gefährliche Stoffe werden von SIEB & MEY-ER-Produkten nicht überschritten.

SIEB & MEYER-Produkte, die mit nebenstehendem Symbol gekennzeichnet sind, erfüllen darüber hinaus die Bestimmungen folgender Richtlinie:

SJ/T 11364-2014 (China RoHS 2 zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten)

Die Grenzwerte der Norm SJ/T 11364-2014 für gefährliche Stoffe werden von SIEB & MEYER-Produkten mit o.a. Symbol nicht überschritten.

3.11 Gewährleistung

SIEB & MEYER gewährleistet für seine Produkte mindestens die gesetzliche Gewährleistung von einem Jahr. Weitergehende Ansprüche sind in einer zusätzlichen Vereinbarung für das jeweilige Produkt zwischen SIEB & MEYER und dem Kunden festzulegen.

Schadenersatzansprüche sind ausgeschlossen durch:

- nicht bestimmungsgemäße Verwendung des Geräts
- nicht normgerechte und unsachgemäße Installation, insbesondere durch nicht konzessionierte Elektroinstallateure
- Betreiben des Geräts bei defekten Schutzeinrichtungen
- Überschreitung der maximal zulässigen Eingangsspannung
- unsachgemäße Bedienung
- Veränderungen am Gerät und dessen Zubehör
- Reparaturen, die nicht durch SIEB & MEYER oder eine von SIEB & MEYER anerkannte Reparaturwerkstatt durchgeführt wurden
- ▶ Fremdkörpereinwirkung und höhere Gewalt

ACHTUNG

Sorgfaltspflicht des Maschinenherstellers

→ Eine von SIEB & MEYER durchgeführte Vorabprogrammierung entbindet den Maschinenhersteller nicht, Werte auf deren Richtigkeit zu überprüfen!

4 EMV-gerechter Geräteaufbau

Hinweis

Für die Inbetriebnahme aller SIEB & MEYER-Geräte sind die EU-Richtlinien für die elektromagnetische Verträglichkeit (EMV) anzuwenden!

Die Anleitung "EMV-gerechter Geräteaufbau" ist in deutscher und englischer Sprache erhältlich und enthält:

- EMV-Regeln
- Hinweise zur fachgerechten Erdung und Verdrahtung
- Sicherheitstechnische Aspekte
- Auszüge aus der EMV-Produktnorm
- ▶ Möglichkeiten für den Anschluss an verschiedene Netzformen

Verfügbarkeit:

► PDF-Datei im Internet unter <u>www.sieb-meyer.de/downloads.html</u>

4.1 Leitungsgebundene und feldgebundene Störaussendung Kategorie C3

Gemäß EMV-Produktnorm DIN EN 61800-3, Kapitel 6 (Störaussendung), entspricht dieses Gerät den Störaussendungs-Grenzwerten der Kategorie C3, wenn die unten aufgeführten Voraussetzungen erfüllt werden.

Voraussetzungen

- Das Gerät enthält eine Grundentstörung mit einem integrierten Netzfilter. Bei Motorkabeln mit einer Länge von >5 m ist ein externes Filter notwendig. Ausführliche Informationen über die Montage und den Anschluss von Netzfiltern finden Sie im Handbuch "EMV-gerechter Geräteaufbau".
- ▶ Ist kein internes Netzfilter vorhanden, muss immer ein externes Netzfilter eingesetzt werden, um Kategorie C3 zu erreichen.

ACHTUNG

Anschluss von Netzfiltern

→ Beachten Sie die Anschlusshinweise des Netzfilter-Herstellers, um eine ausreichende Filterwirkung sicherzustellen.

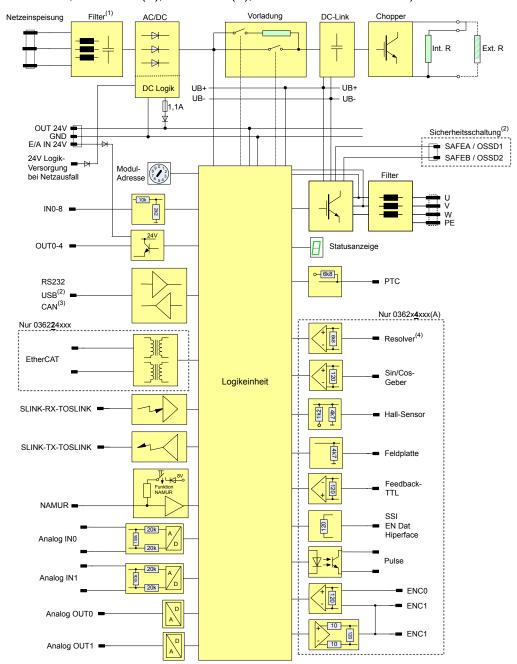
Hinweis

Nähere Informationen zu dem von Ihnen verwendeten Gerät finden Sie im Abschnitt "Technische Daten".

ACHTUNG

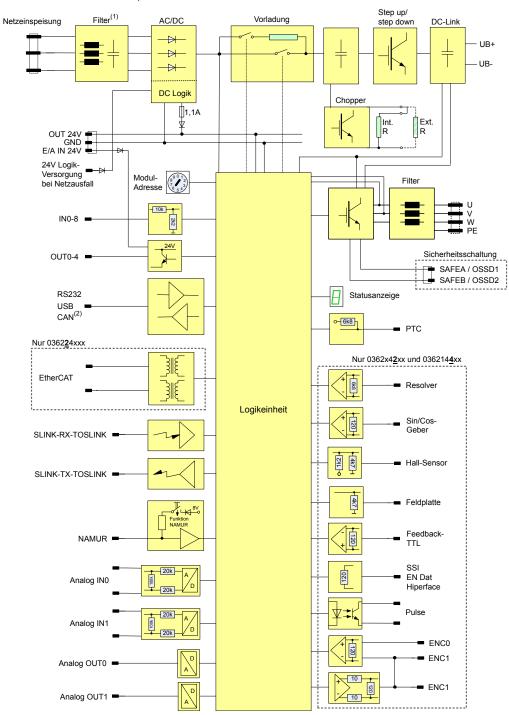
Hochfrequenzstörungen bei Einsatz in einem öffentlichen Niederspannungsnetz

Wird das Gerät in einem öffentlichen Niederspannungsnetz verwendet, das Wohngebiete speist, sind Hochfrequenzstörungen zu erwarten. Diese können andere Geräte in ihrer Funktion beeinträchtigen.


→ Verwenden Sie das Gerät nicht in einem öffentlichen Niederspannungsnetz oder sorgen Sie für entsprechende Entstörmaßnahmen.

5 Antriebsverstärker SD2S

5.1 Blockschaltbilder SD2S


Blockschaltbild für Geräte mit **fester Zwischenkreisspannung** (0362120xx, 0362121xx, 0362x40xx(A), 0362x41xx(A), 0362x45xx bis 0362x48xx):

- (1) Bei 0362x45xx bis 0362x48xx nicht vorhanden. Diese Geräte müssen mit externem Netzfilter und externer 24 V_{DC}-Logikversorgung betrieben werden.
- (2) Bei älteren Geräten nicht vorhanden.
- (3) Bei älteren SD2S Light (036212xxx) nicht vorhanden.
- (4) Bei 0362140DCA und 0362x41ECA nicht vorhanden.

- (1) Ein Netzfilter ist nur auf Gerätevariante 0362x42DC vorhanden. Die Geräte 0362x42EC, 0362x43xx und 0362144xx müssen mit einem externen Netzfilter betrieben werden.
- (2) Bei älteren 0362143xx-Geräten nicht vorhanden.

5.2 Typenschild

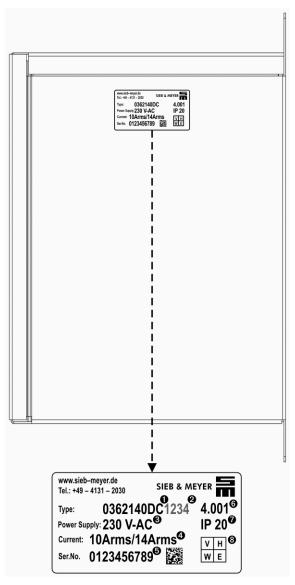
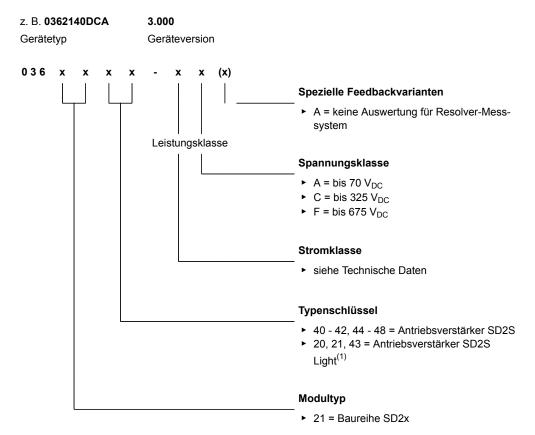



Abb. 1: Typenschild (Beispiel für SD2S)

Nr.	Bedeutung	Erläuterung
0	Gerätebezeichnung	besteht aus Gerätetyp mit Leistungsklasse und maximaler Zwischenkreisspannung
2	Erweiterung für kundenspezifische Geräte	gibt einen 4-stelligen Zifferncode für kundenspezifische Geräte an; bei Standard-Ausführungen ist dieser Code nicht vorhanden
3	Anschlussspannung	gibt den maximalen Spannungsbereich an (keine Angabe bedeutet, dass ein externes Leistungsnetzteil benötigt wird)
4	Nenn-/Spitzenstrom	bezieht sich auf die Endstufe, Angabe in A _{rms} (Effektivwert)
•	Seriennummer	gibt die individuelle Nummer des Geräts an
6	Geräteversion	gibt den Hardwarestand an; ist keine Geräteversion vorhanden, steht hier 0.000
0	Schutzart	gibt den Schutzgrad des Geräts bei Berührung bzw. Fremdkör- pereinwirkung (1. Ziffer) und Feuchtigkeit (2. Ziffer) an
8	QS-Kennzeichnung	

5.3 Gerätebezeichnung

⁽¹⁾ In den Light-Varianten sind diverse Schnittstellen für Messsysteme nicht vorhanden.

Hinweis

Die Antriebsverstärker 0362x49xx der Serie SD2S (mit TÜV-Zertifizierung) sind im Handbuch "Antriebssystem SD2S – Hardwarebeschreibung 0362149xx / 0362249xx" beschrieben.

Geräteversion X.XXX

Fortlaufender Zähler. Ist keine Geräteversion vorhanden, steht hier 0.000. Bei Geräten mit unterschiedlichen Geräteständen ist bei einem Tausch die Kompatibilität untereinander bei SIEB & MEYER zu erfragen.

Zusätzlich gibt die Geräteversion Auskunft über die Updatefähigkeit der internen Gerätesoftware, z. B. BIOS, FPGA oder Firmware.

⁽²⁾ Die EtherCAT-Option ist nicht mit allen SD2S-Geräten erhältlich (siehe Beschreibung der Gerätevarianten).

5.4 Funktionsübersicht der Gerätevarianten

Die folgende Tabelle zeigt die funktionellen Unterschiede zwischen den einzelnen Gerätevarianten der SD2S-Baureihe.

Hinweis

Die Antriebsverstärker 0362x49xx der Serie SD2S (mit TÜV-Zertifizierung) sind im Handbuch "Antriebssystem SD2S – Hardwarebeschreibung 0362149xx / 0362249xx" beschrieben.

		Einspeisung	isung	Zwis	Zwischenkreis		Antrie	Antriebsfunktionen³ (= bis kHz Ausgangsfrequenz	$\sin^3 (= bis)$	kHz Ausg	angsfreque	enz)		Schnittstellen	stellen
Antrieb	Max.	,	,			SERVC	SERVO / VECTOR	HSE	HSBLOCK / FPAM	AM.		HSPAM / UF	M / UF	X6/X7	X17
0362x¹	Ausgangs- leistung S1 ²	1- phasid	3- phasid	fest⁴	geregelt	0/1010	2//3	HSBLOCK (mit Sensor)	mit Sensor)	FPAM	HSPWM	DVA/M	DAM III	(Encoder	(Feed-
)					OVARIO	200	PWM (Hall)	PAM (Hall)	PAM (Hall) (sensorlos)		MAN-L-LO	IN PLAN	0/1)	back)
40xx(A)	1,5 / 4,3 KVA	-//	^ /-	1	_	2 kHz	2 kHz	6 / 2 kHz	-	-	8 / – kHz	2 kHz	-	^	7 5
41xx(A)	6,9 / 9,7 kVA	7	7	7	ı	2 kHz	2 kHz	6 kHz	1	ı	4 / 8 kHz	2 kHz	ı	7	7
42DC	1,5 kVA	7	ı	ı	0 – 350 V _{DC}	2 kHz	auf Anfrage	-	8 kHz	8 kHz	I	I	8 kHz	7	7
42EC	1,9 / 3,8 kVA	'	7	_	0 – 310 V _{DC}	2 kHz	2 kHz	_	8 kHz	8 kHz	ı	-	8 kHz	>	7
44xx	15,9 kVA	_	7	_	0 – 530 V _{DC}	-	_	-	8 kHz	8 kHz	-	_	8 kHz ⁶	^	7
45xx	15,9 / 20,8 kVA	_	>	1	-	2 kHz	2 kHz	auf Anfrage	_	-	4 / – kHz	2 kHz	-	^	>
46xx	30,5 kVA	_	>	^	1	2 kHz	2 kHz	auf Anfrage	ı	ı	4 kHz	2 kHz	-	^	7
47xx	55,4 kVA	Externes DC- Netzteil notwendig	ss DC- otwendig	7	-	2 kHz	2 kHz	auf Anfrage	-	I	4 kHz	2 kHz	ı	7	7
48xx	55,4 kVA	ı	7	7	1	2 kHz	2 kHz	auf Anfrage	_	ı	4 kHz	2 kHz	ı	>	7
SD2S Light	Light														
43xx	1,9 / 3,8 kVA	7	>	1	0 – 310 V _{DC}	ı	_	1	_	8 kHz	-	Ι	8 kHz	-	I
20xx	1,5 kVA	7	ı	7	ı	1	2 kHz	ı	1	I	8 kHz	2 kHz	ı	I	I
21xx	6,9 / 9,7 kVA	7	7	7	_	I	2 kHz	ı	_	I	4 / 8 kHz	2 kHz	ı	-	I

Feldbusoption: 03621... = ohne Feldbusschnittelle; 03622... = mit EtherCAT-Schnittstelle

² Die maximale Ausgangsleistung S1 gilt für das Gerät mit der höchsten Leistungsklasse der jeweiligen Gerätevariante.

Weitere Informationen finden Sie in den technischen Daten Ihres Geräts.

Bei älteren Geräteversionen stehen einige Antriebsfunktionen nicht zur Verfügung.

Die feste Zwischenkreisspannung ist abhängig von der AC-Einspeisung.
 Bei den Gerätevarianten 0362x40DCA und 0362x41ECA ist die Auswertung für das Messsystem Resolver nicht implementiert.
 Bitte halten Sie für diese Funktion eine Projektierungsrücksprache mit dem SIEB & MEYER-Service.

6 Gerätevarianten SD2S

6.1 Kompaktgerät 0362x40xx(A) / 0362120xx

Merkmale der SD2S-Gerätevariante 0362x40xx(A) / 0362120xx:

- integriertes Leistungsnetzteil, 1- oder 3-phasige Einspeisung
- Sicherheitsschaltung
- 0362x40xx(A): Standardausführung mit Schnittstellen für Messsysteme
 - 0362140xx = ohne Feldbusschnittstelle
 - 0362140DCA = ohne Feldbusschnittstelle, ohne Resolver-Auswertung
 - 0362240xx = mit EtherCAT-Schnittstelle
- ▶ 0362120xx: Light-Ausführung ohne Schnittstellen für Messsysteme

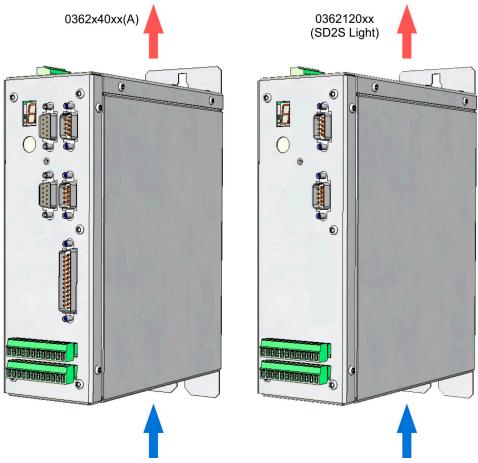


Abb. 2: Geräteansicht 0362x40xx(A) / 0362120xx

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.1.1 Gehäuseabmessungen

Die grau gekennzeichneten Stecker sind nur auf der Gerätevariante 0362x40xx(A) vorhanden:

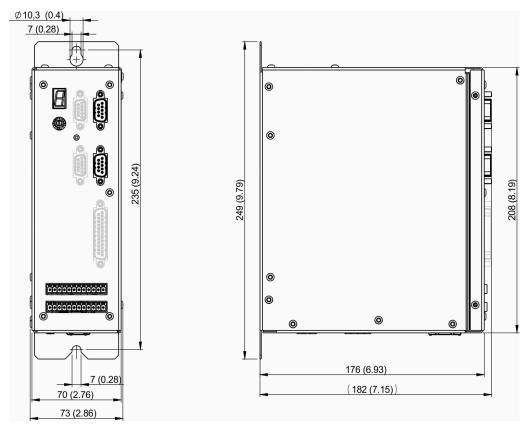


Abb. 3: Maße 0362x40xx(A) / 0362120xx (230 V Einspeisung) in mm (inch)

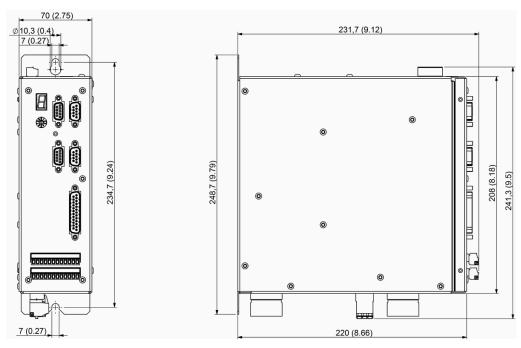


Abb. 4: Maße 0362x40EF (480 V Einspeisung) in mm (inch)

6.1.2 Technische Daten

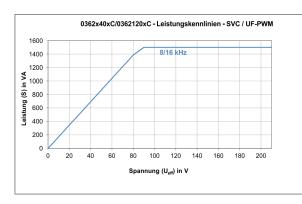
6.1.2.1 Einspeisung 230 V_{AC}

Gerätevariante	0362x40xx(A) / 0362120xx						
Leistungsklasse	DC / DCA	EC	DA				
Phasendauerstrom der Endstufe (±3 %)	14 A _S / 10 A _{eff}	14 A _S / 10 A _{eff}	14 A _S / 10 A _{eff}				
Phasenspitzenstrom der Endstufe (±3 %)	20 A _S / 14 A _{eff}	40 A _S / 28 A _{eff}	20 A _S / 14 A _{eff}				
Max. Zeit für Spitzenstrom	5 s	2 s	5 s				
Max. Endstufentemperatur		75°C	•				
Max. Ausgangsfrequenz		8000 Hz					
Ausgangsfrequenzstabilität		≤ 0,2 %					
Netzeinspeisung (1-phasig)		b bis 230 V _{AC} +10 % : / 60 Hz	1 × 50 V _{AC} -10 % / +40 % 50 Hz / 60 Hz				
Erforderliche Netzdrossel		10 A, Artikel-Nr. 13015834 ⁽¹⁾					
Kurzschlussfestigkeit (SCCR)	1000 A						
Netzfilter	Das interne Netzfilter erf	üllt die Störaussendungsgrenz	werte der Kategorie C3. (2)				
Netzsicherung		16 A					
	z. B. Sien	nens 5SE1 316, Bauform NEO	ZED D01 ⁽³⁾				
Zwischenkreisspannung	160 V _{DC} -10 % bis 325 V _{DC} +10 % 70 V _{DC} -10 % / +40 %						
Ausgangsleistung S1	0,75 kVA bei 4,3 A _{eff} / 100 V _{AC} 0,33 kVA bei 1,5 kVA bei 4,3 A _{eff} / 200 V _{AC} 4,3 A _{eff} / 45 V _{AC}						
Netzphasenstrom bei Nennleistung	8 A						
Logikversorgung ⁽⁴⁾		18 bis 28 V _{DC} (0,5 A)					
Verlustleistung Logikteil	12 W						
Verlustleistung Leistungsteil	maximal 5 % der abgegebenen Motorleistung, mindestens 20 W						
Min. externer Ballastwiderstand		nicht möglich					
Interner Ballastwiderstand	20 Ω	/ 100 W	10 Ω / 50 W				
Ballastschwelle	380) V _{DC}	120 V _{DC}				
Überspannungsschwelle	410) V _{DC}	140 V _{DC}				
Unterspannungsschwelle	40	V_{DC}	30 V _{DC}				
Umgebungstemperaturbereich	100% Nennstro ne Leistungs	höchstens 85 % Luftfeuchtigk om bis maximal 40 °C. Darüber reduzierung erfolgen. Es gilt: - Derating: 0,5°K/W Ballastleistu	r hinaus muss ei- 1,5% pro 1 °C.				
Schutzart		IP20					
Max. Gewicht		2,5 kg					

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽²⁾ Bei Motorleitungen >5 m muss zur Einhaltung der EMV-Richtlinie 2014/30/EU zusätzlich ein externes Netzfilter verwendet werden. Eine Liste der bei SIEB & MEYER erhältlichen Netzfilter finden Sie im Anhang (siehe Seite 195).

⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe Seite 193).


⁽⁴⁾ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.

Nennstrom Derating

Antriebsfunktion ⁽¹⁾	SEF	RVO	SVC;		HSBL	OCK (mit Se	nsor)	HSPWM				
PWM-Frequenz [kHz]	8	16	8	16	8	16	32	64	8	16	32	64	128
0362120DC Nennstrom S1 [A _{eff}]	_	-	10	9,2	_	_	_	_	10	10	9,2	7	5
0362120EC Nennstrom S1 [A _{eff}]	_	-	10	10	_	-	-	-	10	10	10	7	4
0362120DA Nennstrom S1 [A _{eff}]	_	-	10	10	_	_	_	-	10	10	10	10	10
0362x40DC(A) Nennstrom S1 [A _{eff}]	10	9,2	10	9,2	9,8	9	7	4	10	10	9,2	7	5
0362x40EC Nennstrom S1 [A _{eff}]	10	10	10	10	10	10	7,3	4,5	10	10	10	7	4
0362x40DA Nennstrom S1 [A _{eff}]	10	10	10	10	10	10	10	9,8	10	10	10	10	10

⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Geräts finden Sie im <u>Kapitel 5.4 "Funktionsübersicht</u> <u>der Gerätevarianten"</u>, <u>Seite 24</u>.

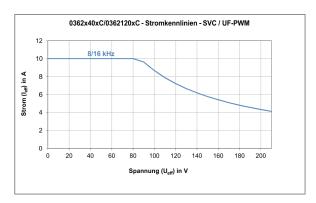
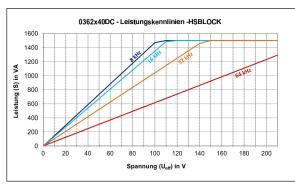



Abb. 5: Ausgangskennlinien 0362x40xC(A) / 0362x20xC im SVC- oder UF-PWM-Betrieb

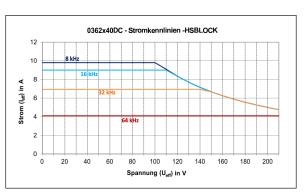
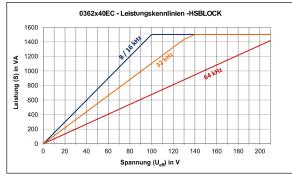



Abb. 6: Ausgangskennlinien 0362x40DC(A) im HSBLOCK-Betrieb (mit Sensor)

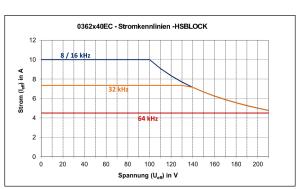
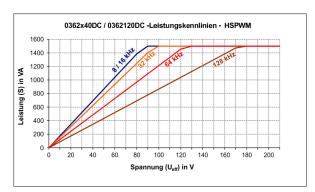



Abb. 7: Ausgangskennlinien 0362x40EC im HSBLOCK-Betrieb (mit Sensor)

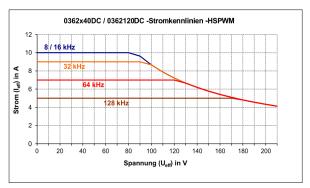


Abb. 8: Ausgangskennlinien 0362x40DC(A) / 0362120DC im HSPWM-Betrieb

6.1.2.2 Einspeisung 480 V_{AC}

Gerätevariante			0362x4	10EF			
Phasendauerstrom der Endstufe (±3 %)			10 A _S /	7 A _{eff}			
Phasenspitzenstrom der Endstufe (±3 %)			40 A _S / 2	28 A _{eff}			
Max. Zeit für Spitzenstrom			5 s	3			
Max. Endstufentemperatur			75°0	С			
Max. Ausgangsfrequenz			2000	Hz			
Ausgangsfrequenzstabilität			≤ 0,2	%			
Netzeinspeisung (3-phasig)		20	0 V _{AC} -10 % bis 50 Hz /		%		
Erforderliche Netzdrossel			16 A, Artikel-Nr.	. 13015801 ⁽¹⁾			
Kurzschlussfestigkeit (SCCR)			1000	Α			
Netzfilter	Das interne	e Netzfilter erfü	llt die Störausse	ndungsgrenz	werte der Kate	gorie C3. ⁽²⁾	
Netzsicherung			16 /		,		
		z. B. Sieme	ens 5SE1 316, E	Bauform NEO	ZED D01 ⁽³⁾		
Zwischenkreisspannung		28	0 V _{DC} -10 % bis	675 V _{DC} +10	%		
Ausgangsleistung S1			4,3 kVA bei 7 A	A _{eff} / 360 V _{AC}			
Netzphasenstrom bei Nennleistung			6,5 A	eff	,		
Antriebsfunktion ⁽⁴⁾	SERVO SVC; UF-PWM HSBLOCK (mit Sensor)						
PWM-Frequenz [kHz]	8 16 8 16 8 16						
Nennstrom S1 [A _{eff}]	7	5	7	5	8,1	5,8	
Logikversorgung ⁽⁵⁾			18 bis 28 V _I	_{DC} (0,5 A)			
Verlustleistung Logikteil			12 V	N			
Verlustleistung Leistungsteil	ma	aximal 5 % der	abgegebenen M	lotorleistung,	mindestens 20	W	
Min. externer Ballastwiderstand			22 Ω / max	c. 500 W			
Interner Ballastwiderstand	22 Ω / 50 W						
Ballastschwelle			800 V	/ _{DC}			
Überspannungsschwelle			850 V	/ _{DC}			
Unterspannungsschwelle			40 V	DC	,		
Umgebungstemperaturbereich	1	00% Nennstror ne Leistungsre	nöchstens 85 % n bis maximal 40 eduzierung erfol W Ballastleistun	0 °C. Darüber gen. Es gilt: -	hinaus muss 1,5% pro 1 °C.	ei-	
Schutzart			IP2	0			
Max. Gewicht			3,5 l	<g< td=""><td></td><td></td></g<>			

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽²⁾ Bei Motorleitungen >5 m muss zur Einhaltung der EMV-Richtlinie 2014/30/EU zusätzlich ein externes Netzfilter verwendet werden. Eine Liste der bei SIEB & MEYER erhältlichen Netzfilter finden Sie im Anhang (siehe Seite 195).

⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe Seite 193).

⁽⁴⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht der Gerätevarianten"</u>, <u>Seite 24</u>.

⁽⁵⁾ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.

6.1.3 Steckerplatzierung

Einspeisung 230 V_{AC}

Die grau gekennzeichneten Stecker sind nur auf folgenden Gerätevarianten vorhanden:

- X6, X7, X17 (Messsysteme): 0362x40xx(A)
- ► X64, X65 (EtherCAT-Option): 0362240xx

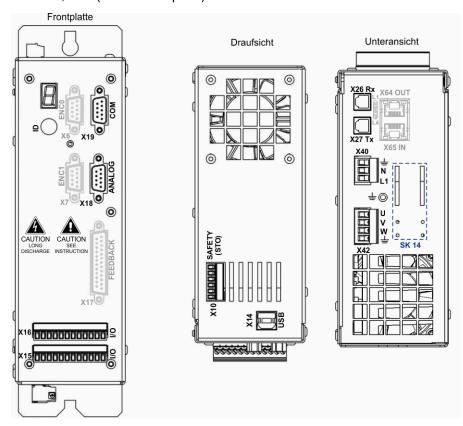


Abb. 9: Anschlüsse auf Gerätevariante 0362x40xx(A) / 0362120xx (230 V Einspeisung)

Einspeisung 480 V_{AC}

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362240EF vorhanden:

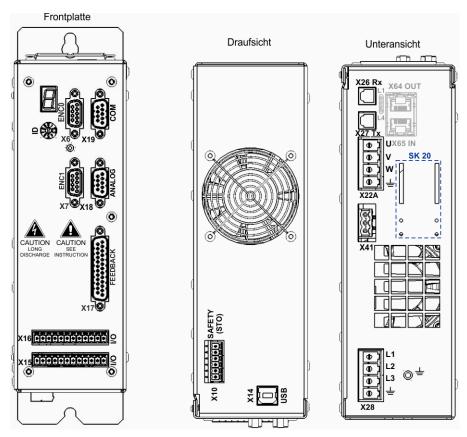


Abb. 10: Anschlüsse auf Gerätevariante 0362x40EF (480 V Einspeisung)

Anschlusstabelle

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	<u>Seite 102</u>
X6 ENC0	Encoder 0 Eingang	Seite 102
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X10 Safety (STO)	Sicherheitsschaltung / Anlaufsperre (STO) ⁽¹⁾	Seite 103
X14 USB	USB-Schnittstelle Parametrierung ⁽¹⁾	Seite 104
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Resolver ⁽²⁾ / Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber / RENISHAW BISS C	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X22A	Motoranschluss 0362x40EF (480 V Einspeisung)	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X28	Einspeisung 0362x40EF (480 V Einspeisung)	<u>Seite 116</u>
X40	Einspeisung 0362x40xx/0362120xx (230 V Einspeisung)	<u>Seite 117</u>
X41	Externer Ballastwiderstand	<u>Seite 117</u>
X42	Motoranschluss 0362x40xx/0362120xx (230 V Einspeisung)	<u>Seite 118</u>
X64 OUT	EtherCAT-Slave-Ausgang	Seite 125
X65 IN	EtherCAT-Slave-Eingang	
=	Gehäuseerdung	Seite 155

Anschluss	Bedeutung	Beschreibung
SK 14/20	Befestigungsmöglichkeit für Schirmanschlussklemme SK 14 bzw. SK 20 von Phoenix (im Steckersatz enthalten)	<u>Seite 151</u>

 $^{^{\}left(1\right) }$ Dieser Anschluss ist bei älteren Geräten nicht vorhanden.

Hinweis

Die passenden Steckersätze für die Gerätevarianten 0362x40xC(A) / 0362120xC (Artikel-Nr. 32299545), 0362x40xA / 0362120xA (Artikel-Nr. 32299546), 0362x40EF (Artikel-Nr. 32299546) sind bei SIEB & MEYER erhältlich.

 $^{^{(2)}}$ Die Resolver-Auswertung ist in der Gerätevariante 0362140DCA nicht implementiert.

6.2 Kompaktgerät 0362x41xx(A) / 0362121xx

Merkmale der SD2S-Gerätevariante 0362x41xx(A) / 0362121xx:

- integriertes Leistungsnetzteil, 1- oder 3-phasige Einspeisung
- Sicherheitsschaltung
- für hohe Leistungen ausgelegt
- ► 0362x41xx(A): Standardausführung mit Schnittstellen für Messsysteme
 - 0362141xx = ohne Feldbusschnittstelle
 - 0362141ECA = ohne Feldbusschnittstelle, ohne Resolver-Auswertung
 - 0362241xx = mit EtherCAT-Schnittstelle
 - 0362241ECA = mit EtherCAT-Schnittstelle, ohne Resolver-Auswertung
- ▶ 0362121xx: Light-Ausführung ohne Schnittstellen für Messsysteme

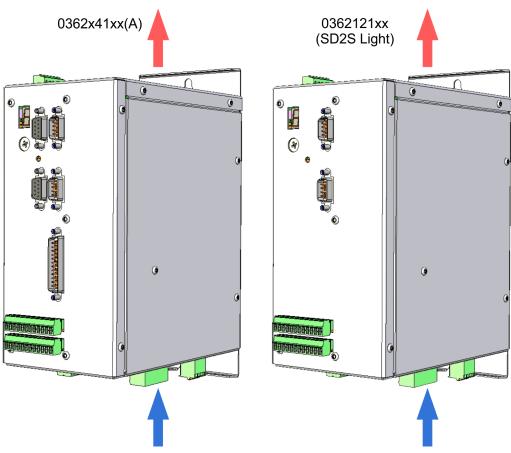


Abb. 11: Geräteansicht 0362x41xx(A) / 0362121xx

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.2.1 Gehäuseabmessungen

Die grau gekennzeichneten Stecker sind nur auf der Gerätevariante 0362x41xx(A) vorhanden:

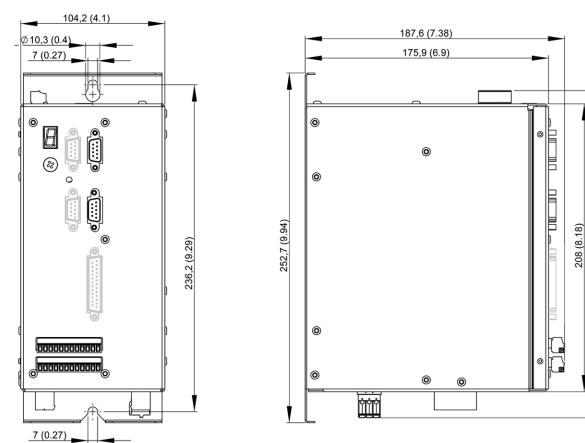


Abb. 12: Maße 0362x41xx(A) / 0362121xx in mm (inch)

6.2.2 Technische Daten

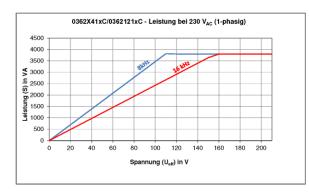
6.2.2.1 Einspeisung 230 V_{AC}

Gerätevariante	0362x41xC(A) / 0362121xC					
Leistungsklasse	IC	EC / ECA				
Phasendauerstrom der Endstufe (±3 %)	28 A _S /	20 A _{eff}				
Phasenspitzenstrom der Endstufe (±3 %)	80 A _S / 56 A _{eff}	40 A _S / 28 A _{eff}				
Max. Zeit für Spitzenstrom	2 s	5 s				
Max. Endstufentemperatur	75°	°C				
Max. Ausgangsfrequenz	8000) Hz				
Ausgangsfrequenzstabilität	≤ 0,2	2 %				
Netzeinspeisung (1- oder 3-phasig)	115 V _{AC} -10 % bis 50 Hz /					
Erforderliche Netzdrossel	25 A, Artikel-N	r. 13015802 ⁽¹⁾				
Kurzschlussfestigkeit (SCCR)	300	0 A				
Netzfilter	Das interne Netzfilter erfüllt die Störaussendungsgrenzwerte der Kategorie C3. (2)					
Netzsicherung	20 A					
	z. B. Siemens 5SD4 30, Bauform DIAZED DII ⁽³⁾					
Zwischenkreisspannung	160 V _{DC} -10 % bis 325 V _{DC} +10 %					
Ausgangsleistung S1 (1-phasig)	1,9 kVA bei 11 3,8 kVA bei 11	7.0				
Ausgangsleistung S1 (3-phasig)	6,9 kVA bei 20	A _{eff} / 200 V _{AC}				
Netzphasenstrom bei Nennleistung	19 A (1- 20 A (3-	. • ,				
Logikversorgung ⁽⁴⁾	18 bis 28 V	_{DC} (0,5 A)				
Verlustleistung Logikteil	12	W				
Verlustleistung Leistungsteil	maximal 5 % der abgegebenen I	Motorleistung, mindestens 20 W				
Min. externer Ballastwiderstand	10	Ω				
Interner Ballastwiderstand	22 Ω /	50 W				
Ballastschwelle	380	V_{DC}				
Überspannungsschwelle	410 V _{DC}					
Unterspannungsschwelle	40 V _{DC}					
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.					
Schutzart	IP2	20				
Max. Gewicht	3,5	kg				

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽²⁾ Bei Motorleitungen >5 m muss zur Einhaltung der EMV-Richtlinie 2014/30/EU zusätzlich ein externes Netzfilter verwendet werden. Eine Liste der bei SIEB & MEYER erhältlichen Netzfilter finden Sie im Anhang (siehe <u>Seite 195</u>).

 $^{^{(3)}}$ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).


 $^{^{(4)}}$ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.

Nennstrom Derating

Antriebsfunktion ⁽¹⁾	SEF	RVO		; UF- VM	HSB	LOCK (mit Sen	sor)		ŀ	ISPWI	Л	
PWM-Frequenz [kHz]	8	16	8	16	8	16	32	64	8	16	32	64	128
0362121IC Nennstrom S1 [A _{eff}]	_	_	20	14	-	-	_	_	20	20	20	17	10
0362121EC Nennstrom S1 [A _{eff}]	_	-	20	14	-	_	-	_	20	20	20	17	10
0362x41IC Nennstrom S1 [A _{eff}]	20	14	20	14	23	18,8	14,7	9,8	20	20	20	17	10
0362x41EC(A) Nennstrom S1 [A _{eff}]	20	14	20	14	21,2	18,8	14,7	9,8	20	20	20	17	10

⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Geräts finden Sie im Kapitel 5.4 "Funktionsübersicht der Gerätevarianten", Seite 24.

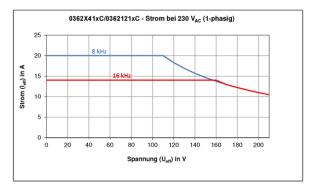
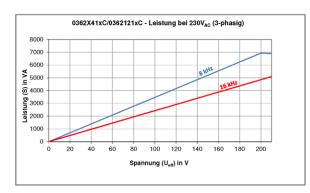



Abb. 13: Ausgangskennlinien 0362x41xC(A) / 0362121xC (1-phasige Einspeisung) im SERVO/SVC- bzw. UF-PWM-Betrieb

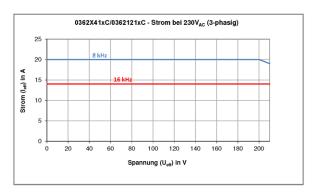


Abb. 14: Ausgangskennlinien 0362x41xC(A) / 0362121xC (3-phasige Einspeisung) im SERVO/SVC- bzw. UF-PWM-Betrieb

6.2.2.2 Einspeisung 480 V_{AC}

Gerätevariante	0362x41xF	0362121xF		
Leistungsklasse	IF	EF		
Phasendauerstrom der Endstufe (±3 %)	20 A _S /	14 A _{eff}		
Phasenspitzenstrom der Endstufe (±3 %)	80 A _S / 56 A _{eff}	40 A _S / 28 A _{eff}		
Max. Zeit für Spitzenstrom	2 s	5 s / 3 s ⁽¹⁾		
Max. Endstufentemperatur	75	°C		
Max. Ausgangsfrequenz	4000) Hz		
Ausgangsfrequenzstabilität	≤ 0,	2 %		
Netzeinspeisung (3-phasig)	200 V _{AC} -10 % b 50 Hz /	_		
Erforderliche Netzdrossel	25 A, Artikel-N	r. 13015802 ⁽²⁾		
Kurzschlussfestigkeit (SCCR)	300	0 A		
Netzfilter	Das interne Netzfilte	r erfüllt die Störaus-		
	sendungsgrenzwerte	der Kategorie C3. ⁽³⁾		
Netzsicherung	16	Α		
	z. B. Siemens 5SE1 316,	Bauform NEOZED D01 ⁽⁴⁾		
Zwischenkreisspannung	280 V _{DC} -10 % bi	s 675 V _{DC} +10 %		
Ausgangsleistung S1	9,7 kVA bei 14	A _{eff} / 400 V _{AC}		
Netzphasenstrom bei Nennleistung	16	Α		
Logikversorgung ⁽⁵⁾	18 bis 28 \	/ _{DC} (0,5 A)		
Verlustleistung Logikteil	12	W		
Verlustleistung Leistungsteil	maximal 5 % der abgegebenen	Motorleistung, mindestens 20 W		
Min. externer Ballastwiderstand	22	Ω		
Interner Ballastwiderstand	22 Ω /	50 W		
Ballastschwelle	800	V_{DC}		
Überspannungsschwelle	850	V_{DC}		
Unterspannungsschwelle	40 \	V _{DC}		
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.			
Schutzart	IP:	20		
Max. Gewicht	3,5	kg		

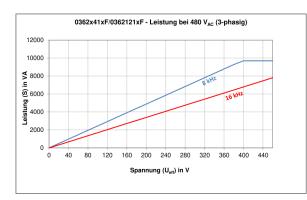
⁽¹⁾ ab Geräteversion 3.300

⁽²⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽³⁾ Bei Motorleitungen >5 m muss zur Einhaltung der EMV-Richtlinie 2014/30/EU zusätzlich ein externes Netzfilter verwendet werden. Eine Liste der bei SIEB & MEYER erhältlichen Netzfilter finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽⁴⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

⁽⁵⁾ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.



Nennstrom Derating

Antriebsfunktion ⁽¹⁾	SERVO SVC; UF- HSBLOCK HSPWM (mit Sensor)		SPWM							
PWM-Frequenz [kHz]	8	16	8	16	8	16	8	16	32	64
0362121IF Nennstrom S1 [A _{eff}]	-	-	14,1	9,9	_	1	20	15,5	10	5
0362121EF Nennstrom S1 [A _{eff}]	_	_	14,1	9,9	-	_	20	15,5	10/ 12 ⁽²⁾	5/ 8,5 ⁽²⁾
0362x41IF Nennstrom S1 [A _{eff}]	14,1	9,9	14,1	9,9	14,7	8,2	20	15,5	10	5
0362x41EF Nennstrom S1 [A _{eff}]	14,1	9,9	14,1	9,9	14,7	9,9	20	15,5	10/ 12 ²	5/ 8,5 ²

⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht der Gerätevarianten"</u>, Seite 24.

⁽²⁾ ab Geräteversion 3.300

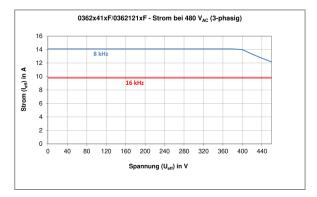


Abb. 15: Ausgangskennlinien 0362x41xF/0362121xF (3-phasige Einspeisung) im SERVO/SVC- bzw. UF-PWM-Betrieb

6.2.3 Steckerplatzierung

Die grau gekennzeichneten Stecker sind nur auf folgenden Gerätevarianten vorhanden:

- ► X6, X7, X17 (Messsysteme): 0362x41xx(A)
- ► X64, X65 (EtherCAT-Option): 0362241xx

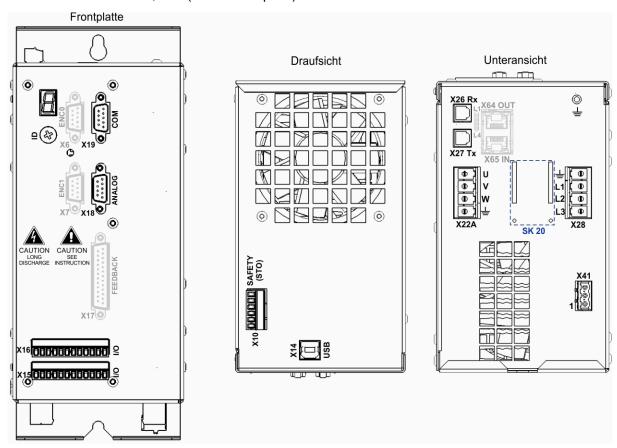


Abb. 16: Anschlüsse auf Gerätevarianten 0362x41xx(A) / 0362121xx

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	<u>Seite 103</u>
X10 Safety (STO)	Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 103</u>
X14 USB	USB-Schnittstelle Parametrierung ⁽¹⁾	Seite 104
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Resolver ⁽²⁾ / Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber / RENISHAW BiSS C	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X22A	Motoranschluss	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X28	Einspeisung	<u>Seite 116</u>
X41	Externer Ballastwiderstand	<u>Seite 117</u>
X64 OUT	EtherCAT-Slave-Ausgang	Seite 125
X65 IN	EtherCAT-Slave-Eingang	
=	Gehäuseerdung	Seite 155

Anschluss	Bedeutung	Beschreibung
SK 20	Befestigungsmöglichkeit für Schirmanschlussklemme SK 20 von Phoenix (im Steckersatz enthalten)	<u>Seite 151</u>

⁽¹⁾ Dieser Anschluss ist bei älteren Geräten der Variante 0362141xx nicht vorhanden.

Hinweis

Der passende Steckersatz für die Gerätevarianten 0362x41xx(A) und 0362121xx (Artikel-Nr. 32299546) ist bei SIEB & MEYER erhältlich.

⁽²⁾ Die Resolver-Auswertung ist in der Gerätevariante 0362x41ECA nicht implementiert.

6.3 Kompaktgerät 0362x42DC

Merkmale der SD2S-Gerätevariante 0362x42DC:

- integriertes Leistungsnetzteil, 1-phasige Einspeisung
- ► geregelte Zwischenkreisspannung 0 350 V (einsetzbar für den Betrieb von Niederspannungsmotoren ohne Netztransformator)
- sensorlose Pulsamplitudenmodulation (FPAM) möglich
- ► Feldbusoption:
 - 0362142DC = ohne Feldbusschnittstelle
 - 0362242DC = mit EtherCAT-Schnittstelle

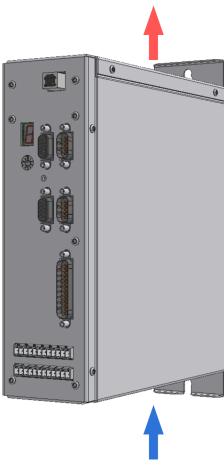


Abb. 17: Geräteansicht 0362x42DC

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.3.1 Gehäuseabmessungen

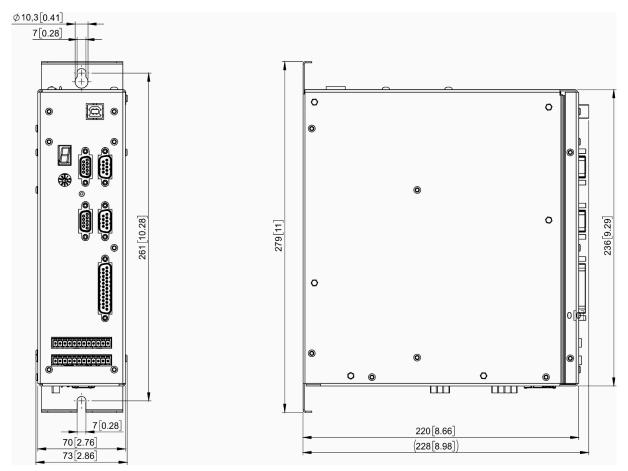


Abb. 18: Maße 0362x42DC in mm [inch]

6.3.2 Technische Daten

Gerätevariante	0362x42DC
Phasendauerstrom der Endstufe bei Servo-Betrieb (±3 %)	14 A _S / 10 A _{eff} (f _{PWM} = 8 kHz)
Phasenspitzenstrom der Endstufe (±3 %)	20 A _S / 14 A _{eff}
Max. Zeit für Spitzenstrom	2 s
Max. Endstufentemperatur	75°C
Max. Ausgangsfrequenz	8000 Hz
Ausgangsfrequenzstabilität	≤ 0,2 %
Netzeinspeisung (1-phasig)	115 V _{AC} -10 % bis 250 V _{AC} +10 % 50 Hz / 60 Hz
Erforderliche Netzdrossel	10 A, Artikel-Nr. 13015834 ⁽¹⁾
Kurzschlussfestigkeit (SCCR)	1000 A
Netzfilter	Das interne Netzfilter erfüllt die Störaussendungsgrenzwerte der Kategorie C3 bis zu einer Motorkabellänge von 30 m.
Netzsicherung	16 A
	z. B. Siemens 5SE1 316, Bauform NEOZED D01 ⁽²⁾
Zwischenkreisspannung	einstellbar bis 155 V (bei 115 V _{AC}) und bis 350 V (bei 250 V _{AC})
Ausgangsleistung S1	1,5 kVA bei 220 V _{AC}
Netzphasenstrom bei Nennleistung	8 A (1-phasig)
Logikversorgung ⁽³⁾	18 bis 28 V _{DC} (0,5 A)
Verlustleistung Logikteil	12 W
Verlustleistung Leistungsteil	maximal 5 % der abgegebenen Motorleistung, mindestens 20 W
Min. externer Ballastwiderstand	22 Ω max. Impulsbelastung 8,4 kWs
Interner Ballastwiderstand	22 Ω / 80 W max. Impulsbelastung 5 kWs
Ballastschwelle	430 V _{DC}
Überspannungsschwelle	450 V _{DC}
Unterspannungsschwelle	40 V _{DC}
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.
Schutzart	IP20
Max. Gewicht	3,25 kg

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽²⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

⁽³⁾ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.

6.3.3 Steckerplatzierung

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362242DC vorhanden:

Abb. 19: Anschlüsse auf Gerätevariante 0362x42DC

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	<u>Seite 102</u>
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X10 Safety (STO)	Sicherheitsschaltung / Anlaufsperre (STO)	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X40	Einspeisung	<u>Seite 117</u>
X41	Externer Ballastwiderstand	<u>Seite 117</u>
X42	Motoranschluss	Seite 118

Anschluss	Bedeutung	Beschreibung
X64 OUT	EtherCAT-Slave-Ausgang	<u>Seite 125</u>
X65 IN	EtherCAT-Slave-Eingang	
(4)	Gehäuseerdung	<u>Seite 155</u>
SK 14	Befestigungsmöglichkeit für Schirmanschlussklemme SK 14 von Phoenix (im Steckersatz enthalten)	<u>Seite 151</u>

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x42DC (Artikel-Nr. 32299602) ist bei SIEB & MEYER erhältlich.

6.4 Kompaktgerät 0362x42EC

Merkmale der SD2S-Gerätevariante 0362x42EC:

- ► integriertes Leistungsnetzteil, 1- und 3-phasige Einspeisung (Zur Einhaltung der EMV-Richtlinie 2014/30/EU ist ein externes Netzfilter notwendig.)
- ► geregelte Zwischenkreisspannung 0 310 V (einsetzbar für den Betrieb von Niederspannungsmotoren ohne Netztransformator)
- sensorlose Pulsamplitudenmodulation (FPAM) möglich
- ► Feldbusoption:
 - 0362142EC = ohne Feldbusschnittstelle
 - 0362<u>2</u>42EC = mit EtherCAT-Schnittstelle

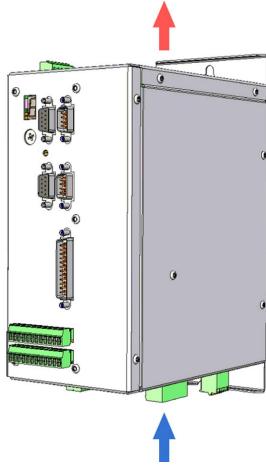
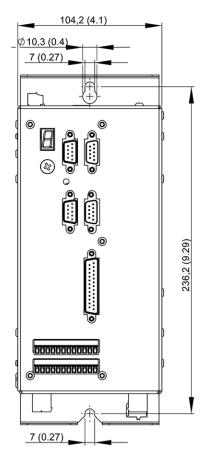


Abb. 20: Geräteansicht 0362x42EC

ACHTUNG


Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.4.1 Gehäuseabmessungen

\$252,7 (9.94)

\$\infty\$ \$\inft

187,6 (7.38)

175,9 (6.9)

Abb. 21: Maße 0362x42EC in mm (inch)

6.4.2 Technische Daten

Gerätevariante				0362x42EC				
Phasendauerstrom der El Servo-Betrieb (±3 %)	ndstufe bei		14 A _S /	10 A _{eff} (f _{PWM}	= 8 kHz)			
Phasenspitzenstrom der (±3 %)	Endstufe	40 A _S / 28 A _{eff}						
Max. Zeit für Spitzenstrom				2 s				
Max. Endstufentemperatur				75°C				
Max. Ausgangsfrequenz				8000 Hz				
Ausgangsfrequenzstabilit	ät			≤ 0,2 %				
Netzeinspeisung (1- oder	3-phasig)			10 % bis 230 \ 50 Hz / 60 Hz				
Erforderliche Netzdrossel	(3-phasig)		16 A, A	rtikel-Nr. 130	15801 ⁽¹⁾			
Kurzschlussfestigkeit (SC	CR)			1000 A				
Netzfilter	1-phasig		20 A, A	rtikel-Nr. 3506	63080 ⁽²⁾			
	3-phasig		50 A, A	rtikel-Nr. 3506	63103 ⁽²⁾			
Netzsicherung	1-phasig	20 A, :	z. B. Siemens	5SD4 30, Ba	uform DIAZE[) DII ⁽³⁾		
	3-phasig	16 A, z.	B. Siemens 5	SE1 316, Bau	uform NEOZE	D D01 ⁽³⁾		
Zwischenkreisspannung	•	einstellbar bis 155 V (bei 115 V _{AC}) und bis 310 V (bei 230 V _{AC})						
Ausgangsleistung S1		1,9 kVA bei 11 A _{eff} / 100 V _{AC} 3,8 kVA bei 11 A _{eff} / 200 V _{AC}						
Netzphasenstrom bei	1-phasig			20 A				
Nennleistung	3-phasig		12 A					
Antriebsfunktion ⁽⁴⁾		SERV	SERVO; SVC HSBLOCK (mit Sensor); FPAM (sensorlos)			UF-PAM		
PWM-Frequenz [kHz]		8	16	16	32	8		
Nennstrom S1 [A _{eff}]		10	10	8,16	6,94	10		
Logikversorgung ⁽⁵⁾			18 1	ois 28 V _{DC} (0,	5 A)			
Verlustleistung Logikteil		12 W						
Verlustleistung Leistungst	eil	maximal 5 °	% der abgege	benen Motorle	eistung, minde	estens 20 W		
Min. externer Ballastwide	rstand	10 Ω						
Interner Ballastwiderstand	<u> </u>			22 Ω / 50 W				
Ballastschwelle		380 V _{DC}						
Überspannungsschwelle		410 V _{DC}						
Unterspannungsschwelle		40 V _{DC}						
Umgebungstemperaturbe	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.							
Schutzart		IP20						
Max. Gewicht				4 kg				

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽²⁾ Zur Einhaltung der EMV-Richtlinie 2014/30/EU muss ein externes Netzfilter verwendet werden. Weitere Netzfilter, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

⁽⁴⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel</u> 5.4 "Funktionsübersicht der Gerätevarianten", Seite 24.

⁽⁵⁾ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.

6.4.3 Steckerplatzierung

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362242EC vorhanden.

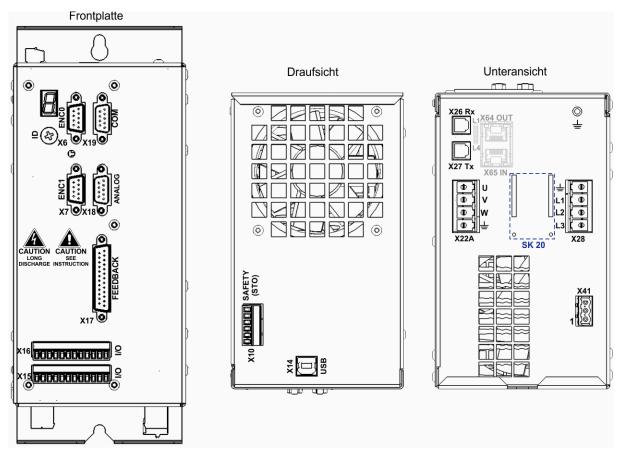


Abb. 22: Anschlüsse auf Gerätevariante 0362x42EC

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X10 Safety (STO)	Sicherheitsschaltung / Anlaufsperre (STO)	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	Seite 107
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	Seite 113
X22A	Motoranschluss	Seite 113
X26 Rx	SERVOLINK 4 optischer Eingang	Seite 114
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X28	Einspeisung	<u>Seite 116</u>
X41	Externer Ballastwiderstand	<u>Seite 117</u>
X64 OUT	EtherCAT-Slave-Ausgang	<u>Seite 125</u>
X65 IN	EtherCAT-Slave-Eingang	
-	Gehäuseerdung	<u>Seite 155</u>
SK 20	Befestigungsmöglichkeit für Schirmanschlussklemme SK 20 von Phoenix (im Steckersatz enthalten)	<u>Seite 151</u>

Gerätevarianten SD2S

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x42EC (Artikel-Nr. 32299546) ist bei SIEB & MEYER erhältlich.

6.5 Kompaktgerät 0362x43xx

Merkmale der Gerätevariante 0362x43xx (SD2S Light):

- ▶ integriertes Leistungsnetzteil, 1- und 3-phasige Einspeisung (Zur Einhaltung der EMV-Richtlinie 2014/30/EU ist ein externes Netzfilter notwendig.)
- ► geregelte Zwischenkreisspannung 0 310 V (einsetzbar für den Betrieb von Niederspannungsmotoren ohne Netztransformator)
- nur sensorlose Antriebsfunktionen FPAM und UF-PAM möglich (siehe <u>Kapitel</u> 5.4 "Funktionsübersicht der Gerätevarianten", Seite 24)
- Sicherheitsschaltung
- Feldbusoption:
 - 0362<u>1</u>43xx = ohne Feldbusschnittstelle
 - 0362243xx = mit EtherCAT-Schnittstelle

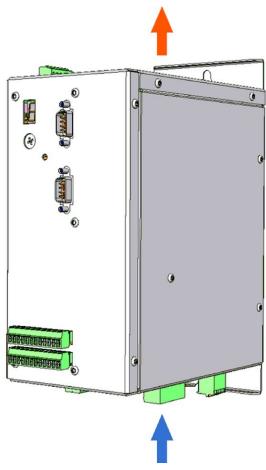


Abb. 23: Geräteansicht 0362x43xx

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

Gehäuseabmessungen 6.5.1

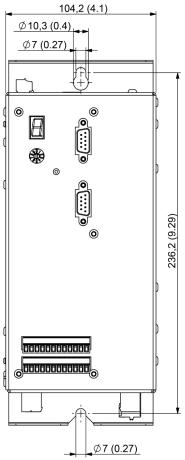
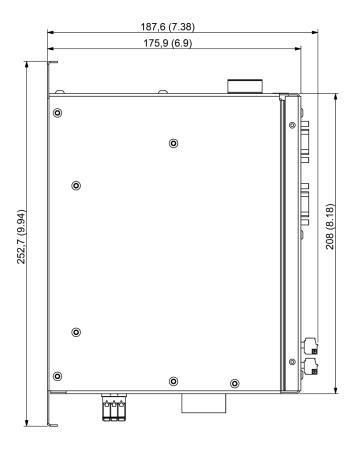



Abb. 24: Maße 0362x43xx in mm (inch)

6.5.2 Technische Daten

Gerätevariante		0362x43EC				
Phasendauerstrom der Er Servo-Betrieb (±3 %)	idstufe bei	14 .	A_S / 10 A_{eff} (f_{PWM} = 8 k	Hz)		
Phasenspitzenstrom der E (±3 %)	Endstufe	40 A _S / 28 A _{eff}				
Max. Zeit für Spitzenstrom			2 s			
Max. Endstufentemperatu	r		75°C			
Max. Ausgangsfrequenz			8000 Hz			
Ausgangsfrequenzstabilitä	it		≤ 0,2 %			
Netzeinspeisung (1- oder	3-phasig)	115 V	$^{\prime}_{AC}$ -10 % bis 230 $^{\prime}_{AC}$ -50 Hz / 60 Hz	+10 %		
Erforderliche Netzdrossel	(3-phasig)	16	A, Artikel-Nr. 1301580	1 ⁽¹⁾		
Kurzschlussfestigkeit (SC	CR)		1000 A			
Netzfilter	1-phasig	20	A, Artikel-Nr. 3506308	0 ⁽²⁾		
	3-phasig		A, Artikel-Nr. 3506310			
Netzsicherung	1-phasig					
	3-phasig	16 A, z. B. Siemens 5SE1 316, Bauform NEOZED D01 ⁽³⁾				
Zwischenkreisspannung	l.	einstellbar bis 155 V (bei 115 V _{AC}) und bis 310 V (bei 230 V _{AC})				
Ausgangsleistung S1		1,9 kVA bei 11 A _{eff} / 100 V _{AC}				
Notanhaganatram hai	1 phoois	3,8 kVA bei 11 A _{eff} / 200 V _{AC}				
Netzphasenstrom bei Nennleistung	1-phasig 3-phasig	20 A 12 A				
Antriebsfunktion ⁽⁴⁾	J-priasig	FPAM (s	ensorlos)	UF-PAM		
PWM-Frequenz [kHz]		16	32	8		
Nennstrom S1 [A _{eff}]		11,4	11,4	10		
Logikversorgung ⁽⁵⁾		,	18 bis 28 V _{DC} (0,5 A)			
Verlustleistung Logikteil		12 W				
Verlustleistung Leistungst	eil	maximal 5 % der abgegebenen Motorleistung, mindestens 20 W				
Min. externer Ballastwider	stand	10 Ω				
Interner Ballastwiderstand		22 Ω / 50 W				
Ballastschwelle		380 V _{DC}				
Überspannungsschwelle		410 V _{DC}				
Unterspannungsschwelle		40 V _{DC}				
Umgebungstemperaturbereich		5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.				
Schutzart		IP20				
Max. Gewicht		4 kg				

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽²⁾ Zur Einhaltung der EMV-Richtlinie 2014/30/EU muss ein externes Netzfilter verwendet werden. Weitere Netzfilter, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

⁽⁴⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht der Gerätevarianten", Seite 24.</u>

⁽⁵⁾ Die Logikversorgung ist zur Erhaltung der Fehlermeldungen notwendig.

6.5.3 Steckerplatzierung

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362243xx vorhanden:



Abb. 25: Anschlüsse auf Gerätevariante 0362x43xx

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X10 Safety (STO)	Sicherheitsschaltung / Anlaufsperre (STO)	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	Seite 104
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X18 Analog	Analogsignale	Seite 112
X19 COM	COM-Schnittstelle	Seite 113
X22A	Motoranschluss	Seite 113
X26 Rx	SERVOLINK 4 optischer Eingang	Seite 114
X27 Tx	SERVOLINK 4 optischer Ausgang	Seite 114
X28	Einspeisung	Seite 116
X41	Externer Ballastwiderstand	<u>Seite 117</u>
X64 OUT	EtherCAT-Slave-Ausgang	Seite 125
X65 IN	EtherCAT-Slave-Eingang	
÷	Gehäuseerdung	Seite 155
SK 20	Befestigungsmöglichkeit für Schirmanschlussklemme SK 20 von Phoenix (im Steckersatz enthalten)	Seite 151

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x43xx (Artikel-Nr. 32299546) ist bei SIEB & MEYER erhältlich.

6.6 Kompaktgerät 0362144xx

Merkmale der SD2S-Gerätevariante 0362144xx:

- integriertes Leistungsnetzteil, 3-phasige Einspeisung (Zur Einhaltung der EMV-Richtlinie 2014/30/EU ist ein externes Netzfilter notwendig.)
- ► geregelte Zwischenkreisspannung 0 530 V (einsetzbar für den Betrieb von Niederspannungsmotoren ohne Netztransformator)
- sensorlose Pulsamplitudenmodulation (FPAM) möglich
- Sicherheitsschaltung

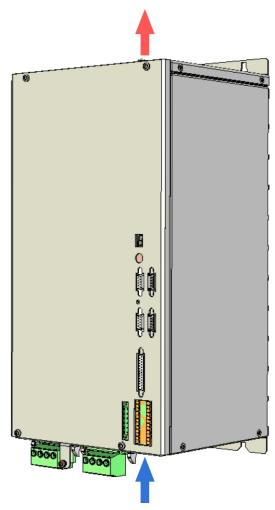


Abb. 26: Geräteansicht 0362144xx

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.6.1 Gehäuseabmessungen

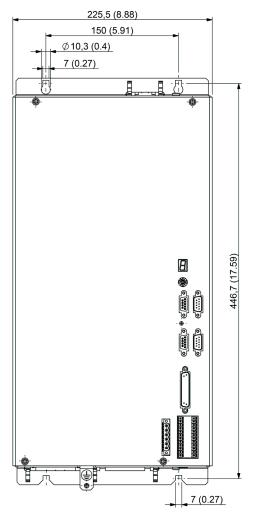
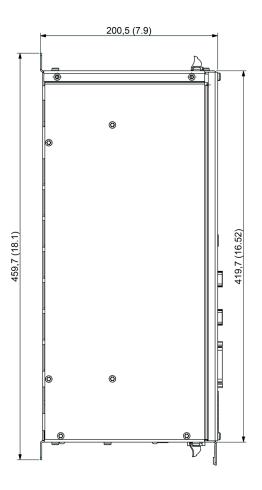



Abb. 27: Maße 0362144xx in mm (inch)

6.6.2 Technische Daten

Gerätevariante	03621	44EF		
Phasendauerstrom der Endstufe (±3 %)	32,5 A _S / 23 A _{eff}			
Phasenspitzenstrom der Endstufe (±3 %)	40 A _S / 28,3 A _{eff}			
Max. Zeit für Spitzenstrom	5 s			
Max. Endstufentemperatur	75°C			
Max. Ausgangsfrequenz	8000 Hz			
Ausgangsfrequenzstabilität	≤ 0,2 %			
Netzeinspeisung (3-phasig) ⁽¹⁾	200 V _{AC} -10 % bis 480 V _{AC} +10 % 50 Hz / 60 Hz			
Kurzschlussfestigkeit (SCCR)	300	0 A		
Netzsicherung	30 A z. B. Siemens 5SD4 80, Bauform DIAZED DII ⁽²⁾			
Zwischenkreisspannung	einstellbar bis 325 V (bei 230 V_{AC}), bis 565 V (bei 400 V_{AC}) und bis 680 V (bei 480 V_{AC})			
Ausgangsleistung S1	15,9 kVA bei 23 A _{eff} / 400 V _{AC}			
Netzphasenstrom bei Nennleistung	26 A			
Antriebsfunktion ⁽³⁾	HSBLOCK (mit Sensor); FPAM (sensorlos)	UF-PAM		
PWM-Frequenz [kHz]	16	16		
Nennstrom S1 [A _{eff}]	23	23		
Logikversorgung ⁽⁴⁾	18 bis 28	V _{DC} (2 A)		
Verlustleistung Logikteil	12 W			
Verlustleistung Leistungsteil	maximal 5 % der abgegebenen	Motorleistung, mindestens 20 W		
Min. externer Ballastwiderstand	22 Ω			
Interner Ballastwiderstand	16,5 Ω / 500 W max. Impulsbelastung 36 kWs			
Ballastschwelle	800 V _{DC}			
Überspannungsschwelle	850 V _{DC}			
Unterspannungsschwelle	40 V _{DC}			
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.			
Schutzart	IP20			
Max. Gewicht	18,2			

⁽¹⁾ Zur Einhaltung der EMV-Richtlinie 2014/30/EU muss ein externes Netzfilter verwendet werden. Netzfilter, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽²⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

⁽³⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel</u> 5.4 "Funktionsübersicht der Gerätevarianten", Seite 24.

⁽⁴⁾ Die Logikversorgung ist zwingend erforderlich.

6.6.3 Steckerplatzierung

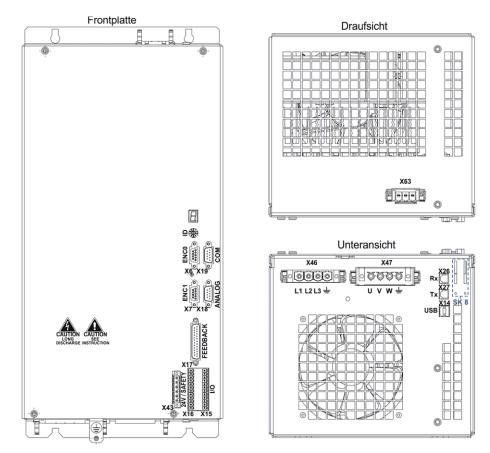


Abb. 28: Anschlüsse auf Gerätevariante 0362144xx

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	Seite 107
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X43 Safety	24 V-Versorgung; Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 119</u>
X46	Einspeisung	<u>Seite 120</u>
X47	Motoranschluss	<u>Seite 121</u>
X63	Externer Ballastwiderstand	Seite 124
SK 8	Befestigungsmöglichkeit für Schirmanschlussklemme SK 8 von Phoenix (im Steckersatz enthalten)	<u>Seite 151</u>

Hinweis

Der passende Steckersatz für die Gerätevariante 0362144xx (Artikel-Nr. 32299566) ist bei SIEB & MEYER erhältlich.

6.7 Kompaktgerät 0362x45xx

Merkmale der SD2S-Gerätevariante 0362x45xx:

- ► integriertes Leistungsnetzteil, 3-phasige Einspeisung (Zur Einhaltung der EMV-Richtlinie 2014/30/EU ist ein externes Netzfilter notwendig.)
- Sicherheitsschaltung
- ► für hohe Leistungen ausgelegt
- ▶ 0362<u>1</u>45xx: Standardausführung ohne Feldbusschnittstelle
 - Facelift ab Geräteversion 4.200 (ausgeliefert ab Juni 2017)
- ▶ 0362245xx: Ausführung mit EtherCAT-Schnittstelle

Abb. 29: Geräteansicht 0362145xx (Geräteversion < 4.200)

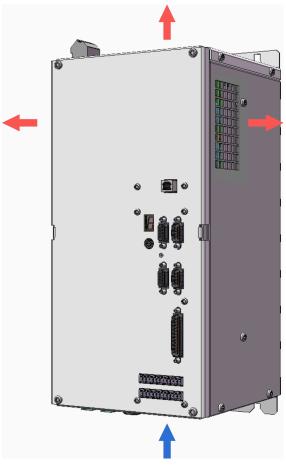


Abb. 30: Geräteansicht 0362145xx mit Facelift (Geräteversion ≥ 4.200) und 0362245xx

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.7.1 Gehäuseabmessungen

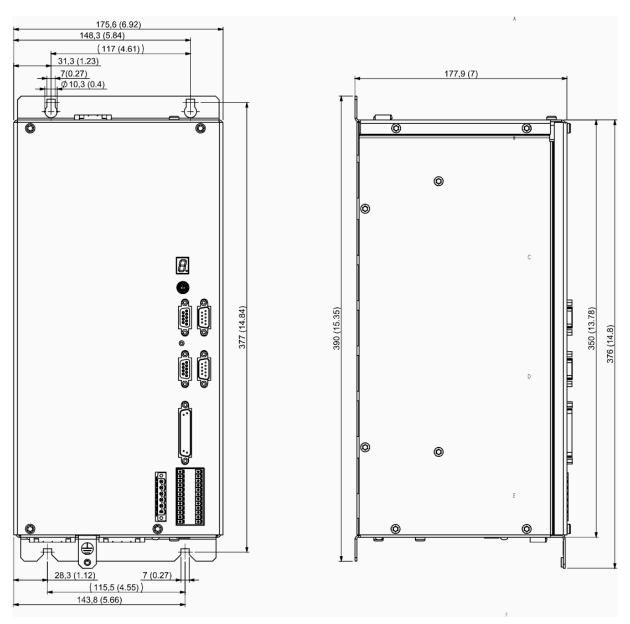


Abb. 31: Maße 0362145xx (Geräteversion < 4.200) in mm (inch)

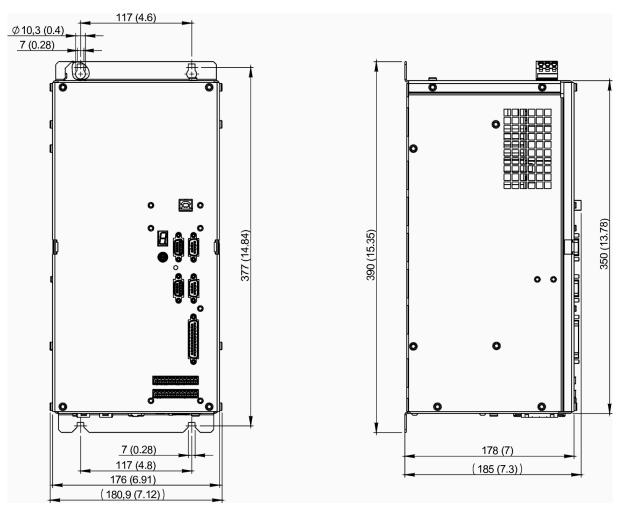


Abb. 32: Maße 0362145xx mit Facelift (Geräteversion \geq 4.200) und 0362245xx in mm (inch)

6.7.2 Technische Daten

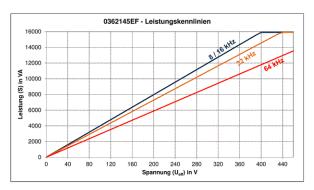
Einspeisung 480 V_{AC}

Gerätevariante	0362x45EF	0362x45IF			
Phasendauerstrom der Endstufe (±3 %)	32,5 A _S / 23 A _{eff}	42,4 A _S / 30 A _{eff}			
Phasenspitzenstrom der Endstufe (±3 %)	40 A _S / 28,3 A _{eff}	80 A _S / 56,6 A _{eff}			
Max. Zeit für Spitzenstrom	5 s	2 s			
Max. Endstufentemperatur	75°C				
Max. Ausgangsfrequenz	4000 Hz				
Ausgangsfrequenzstabilität	≤ 0,	2 %			
Netzeinspeisung (3-phasig)	200 V_{AC} -10 % bis 480 V_{AC} +10 % 50 Hz / 60 Hz				
Erforderliche Netzdrossel	35 A, Artikel-N	lr. 13015803 ⁽¹⁾			
Kurzschlussfestigkeit (SCCR)	300	0 A			
Erforderliches Netzfilter	50 A, Artikel-N	Ir. 35063103 ⁽²⁾			
Netzsicherung	30 A z. B. Siemens 5SD4 80, Bauform DIAZED DII ⁽³⁾	50 A z. B. Siemens 5SD4 60, Bauform DIAZED DIII ⁽³⁾			
Zwischenkreisspannung	280 V _{DC} -10 % bis 675 V _{DC} +10 %				
Ausgangsleistung S1	15,9 kVA bei 23 A _{eff} / 400 V _{AC}	20,8 kVA bei 30 A _{eff} / 400 V _{AC}			
Netzphasenstrom bei Nennleistung	26 A	32 A			
Logikversorgung ⁽⁴⁾	18 - 28 V _{DC} (0,9 A / 24 V _{DC})				
Verlustleistung Logikteil	22 W				
Verlustleistung Leistungsteil	PWM-Frequenz 8 kHz = 320 W PWM-Frequenz 16 KHz = 430 W	PWM-Frequenz 8 kHz = 450 W PWM-Frequenz 16 kHz = 480 W			
Min. externer Ballastwiderstand	22 Ω 22 Ω 22 Ω max. Impulsbelastung 29 kWs max. Impulsbelastung 29				
Interner Ballastwiderstand	33 Ω / 250 W max. Impulsbelastung 17 kWs				
Ballastschwelle	800 V _{DC}				
Überspannungsschwelle	perspannungsschwelle 850 V _{DC}				
Unterspannungsschwelle	erspannungsschwelle				
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.				
Schutzart	IP20				
Max. Gewicht	7,8 kg				

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

Nennstrom Derating

Antriebsfunktion ⁽¹⁾ SERVO; SVC; UF-PWM		HSBLOCK (mit Sensor)				HSPWM				
PWM Frequenz [kHz]	8	16	8	16	32	64	8	16	32	64
0362x45EF Nennstrom S1 [A _{eff}]	23	23	23	21	18	10	23	23	21	17
0362x45IF Nennstrom S1 [A _{eff}]	30	25	_	_	_	_	_	_	_	-


⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht</u> <u>der Gerätevarianten"</u>, <u>Seite 24</u>.

⁽²⁾ Zur Einhaltung der EMV-Richtlinie 2014/30/EU muss ein externes Netzfilter verwendet werden. Weitere Netzfilter, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe Seite 193).

⁽⁴⁾ Die Logikversorgung ist zwingend erforderlich.

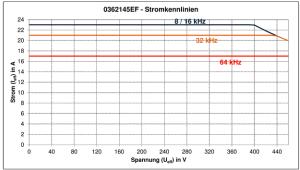


Abb. 33: Ausgangskennlinien 0362x45EF im HSPWM-Betrieb

6.7.3 Steckerplatzierung

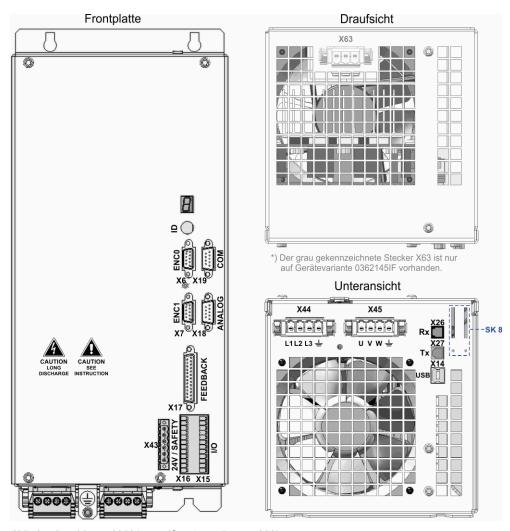


Abb. 34: Anschlüsse 0362145xx (Geräteversion < 4.200)

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362245xx vorhanden:

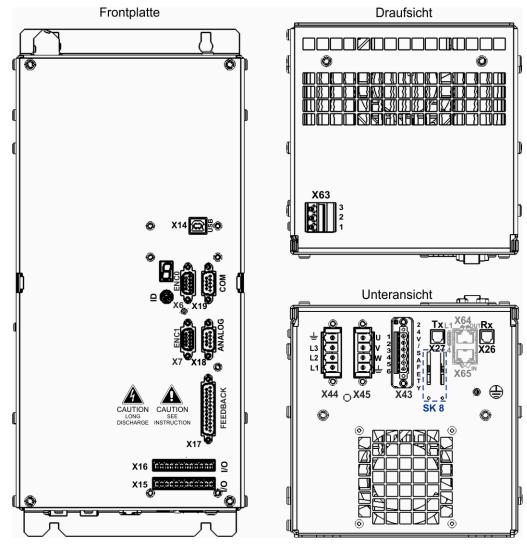


Abb. 35: Anschlüsse 0362145xx mit Facelift (Geräteversion ≥ 4.200) und 0362245xx

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	<u>Seite 102</u>
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X43 Safety	24 V-Versorgung; Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 119</u>
X44	Einspeisung	<u>Seite 119</u>
X45	Motoranschluss	<u>Seite 120</u>
X63	Externer Ballastwiderstand (nur 0362x45IF)	Seite 124

Anschluss	Bedeutung	Beschreibung
X64 OUT	EtherCAT-Slave-Ausgang	<u>Seite 125</u>
X65 IN	EtherCAT-Slave-Eingang	
Gehäuseerdung über PE-Lasche (Geräteversion < 4.200)		_
	Gehäuseerdung über PE-Schraube an der Unterseite (nach Facelift: ab Geräteversion 4.200)	<u>Seite 155</u>
SK 8	Befestigungsmöglichkeit für Schirmanschlussklemme SK 8 von	<u>Seite 151</u>
	Phoenix (im Steckersatz enthalten) ⁽¹⁾	

 $^{^{(1)}}$ Die Befestigungslöcher für die Schirmanschlussklemme sind bei älteren Geräten noch nicht vorhanden.

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x45xx (Artikel-Nr. 32299565) ist bei SIEB & MEYER erhältlich.

6.8 Kompaktgerät 0362x46xx

Merkmale der SD2S-Gerätevariante 0362x46xx:

- ► integriertes Leistungsnetzteil, 3-phasige Einspeisung (Zur Einhaltung der EMV-Richtlinie 2014/30/EU ist ein externes Netzfilter notwendig.)
- Sicherheitsschaltung
- ► für hohe Leistungen ausgelegt
- ▶ 0362<u>1</u>46xx: Standardausführung ohne Feldbusschnittstelle
 - Facelift ab Geräteversion 4.200 (ausgeliefert ab Oktober 2017)
- ▶ 0362246xx: Ausführung mit EtherCAT-Schnittstelle

Abb. 36: Geräteansicht 0362146xx (Geräteversion < 4.200)

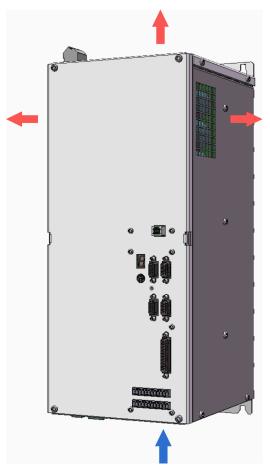
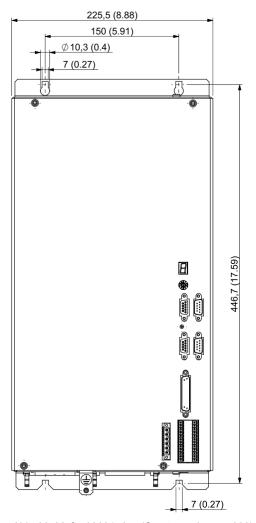
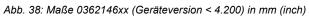
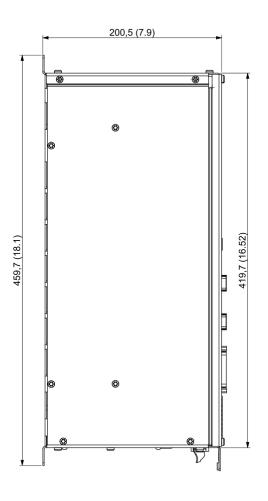


Abb. 37: Geräteansicht 0362146xx mit Facelift (Geräteversion ≥ 4.200) und 0362246xx

ACHTUNG


Behinderung des Kühlluftstroms


Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.


- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.8.1 Gehäuseabmessungen

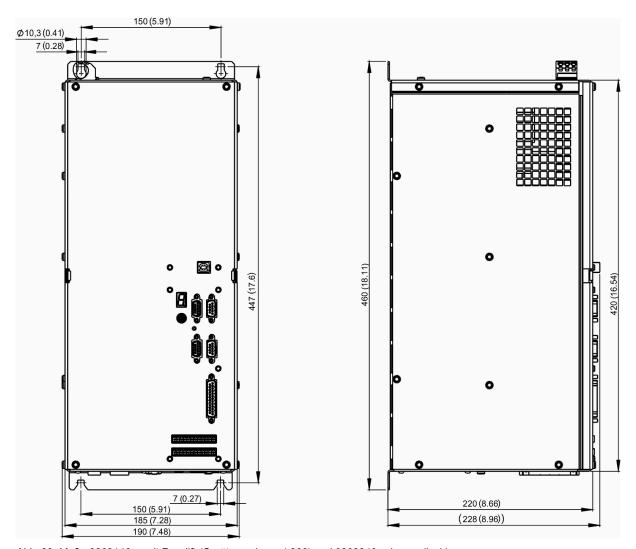


Abb. 39: Maße 0362146xx mit Facelift (Geräteversion \geq 4.200) und 0362246xx in mm (inch)

6.8.2 Technische Daten

Einspeisung 480 V_{AC}

Gerätevariante	0362x46IF	0362x46LF	
Phasendauerstrom der Endstufe (±3 %)	49,5 A _S / 35 A _{eff}	62 A _S / 44 A _{eff}	
Phasenspitzenstrom der Endstufe (±3 %)	80 A _S / 56,6 A _{eff}	100 A _S / 70,7 A _{eff}	
Max. Zeit für Spitzenstrom	5	S	
Max. Endstufentemperatur	75	°C	
Max. Ausgangsfrequenz	4000	0 Hz	
Ausgangsfrequenzstabilität	≤ 0,	2 %	
Netzeinspeisung (3-phasig)	200 V _{AC} -10 % bi 50 Hz <i>i</i>	s 480 V _{AC} +10 % / 60 Hz	
Erforderliche Netzdrossel	40 A, Artikel-Nr. 13015804 ⁽¹⁾	50 A, Artikel-Nr. 13015805 ⁽¹⁾	
Kurzschlussfestigkeit (SCCR)	300	0 A	
Erforderliches Netzfilter	50 A, Artikel-N	Ir. 35063103 ⁽²⁾	
Netzsicherung	50 A z. B. Siemens 5SD4 60, Bauform DIAZED DIII ⁽³⁾	63 z. B. Siemens 5SD4 70, Bauform DIAZED DIII ⁽³⁾	
Zwischenkreisspannung	280 V _{DC} -10 % bi		
Ausgangsleistung S1	24,2 kVA bei 35 A _{eff} / 400 V _{AC}	30,5 kVA bei 44 A _{eff} / 400 V _{AC}	
Netzphasenstrom bei Nennleistung	39 A	49 A	
Logikversorgung ⁽⁴⁾	18 - 28 V _{DC} (1	,5 A / 24 V _{DC})	
Verlustleistung Logikteil	36	W	
Verlustleistung Leistungsteil	PWM-Frequenz 8 kHz = 540 W PWM-Frequenz 16 kHz = 690 W	PWM-Frequenz 8 kHz = 645 W PWM-Frequenz 16 kHz = 855 W	
Min. externer Ballastwiderstand	20 Ω / 2,5 kW max. Impulsbelastung 32 kWs	10 Ω / 5 kW max. Impulsbelastung 64 kWs	
Interner Ballastwiderstand	33 Ω / 250 W max. Impulsbelastung 17 kWs	16,5 Ω / 500 W max. Impulsbelastung 34 kWs	
Ballastschwelle	800	V _{DC}	
Überspannungsschwelle	850	V _{DC}	
Unterspannungsschwelle	40 '	V_{DC}	
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.		
Schutzart	IP20		
Max. Gewicht	13,7		

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽²⁾ Zur Einhaltung der EMV-Richtlinie 2014/30/EU muss ein externes Netzfilter verwendet werden. Weitere Netzfilter, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).

⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

⁽⁴⁾ Die Logikversorgung ist zwingend erforderlich.

Nennstrom Derating

Antriebsfunktion ⁽¹⁾); SVC; PWM	HSBLOCK (mit Sensor)		HSPWM			
PWM-Frequenz [kHz]	8	16	8	16	32	8	16	32
0362x46IF Nennstrom S1 [A _{eff}]	35	33	35	35	27	35	35	31
0362x46LF Nennstrom S1 [A _{eff}]	44	44 ⁽²⁾	44	44	33	44	44	35

⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht der Gerätevarianten"</u>, <u>Seite 24</u>.

 $^{^{(2)}}$ Bei einer Einspeisung von 480 V_{AC} beträgt der Nennstrom 34 A_{eff} .

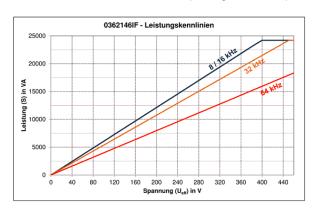
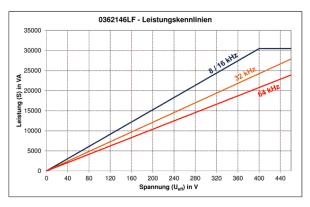



Abb. 40: Ausgangskennlinien 0362x46IF im HSPWM-Betrieb

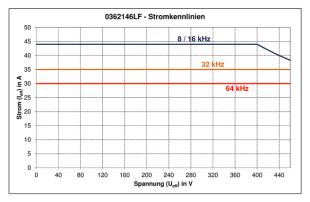


Abb. 41: Ausgangskennlinien 0362x46LF im HSPWM-Betrieb

6.8.3 Steckerplatzierung

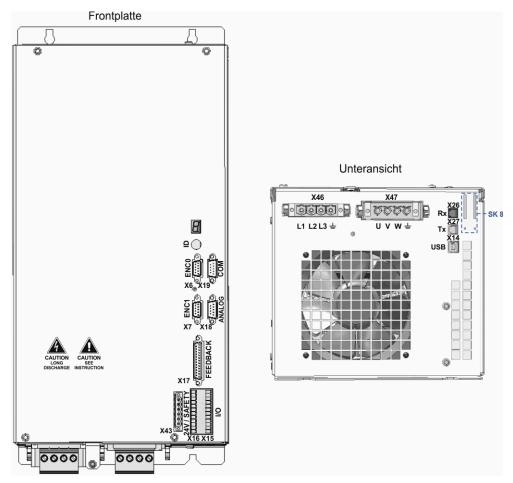


Abb. 42: Anschlüsse 0362146xx (Geräteversion < 4.200)

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362246xx vorhanden:

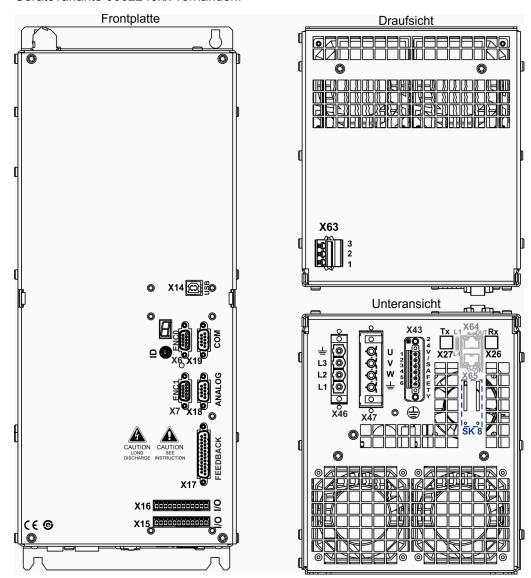


Abb. 43: Anschlüsse 0362146xx mit Facelift (Geräteversion ≥ 4.200) und 0362246xx

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X6 ENC0	Encoder 0 Eingang	Seite 102
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X43 Safety	24 V-Versorgung; Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 119</u>
X46	Einspeisung	<u>Seite 120</u>
X47	Motoranschluss	<u>Seite 121</u>
X63	Externer Ballastwiderstand	Seite 124

Anschluss	Bedeutung	Beschreibung
X64 OUT	EtherCAT-Slave-Ausgang	Seite 125
X65 IN	EtherCAT-Slave-Eingang	
	Gehäuseerdung über PE-Lasche (Geräteversion < 4.200)	_
	Gehäuseerdung über PE-Schraube an der Unterseite (nach Facelift: ab Geräteversion 4.200)	<u>Seite 155</u>
SK 8	Befestigungsmöglichkeit für Schirmanschlussklemme SK 8 von	<u>Seite 151</u>
	Phoenix (im Steckersatz enthalten) ⁽¹⁾	

⁽¹⁾ Die Befestigungslöcher für die Schirmanschlussklemme sind bei älteren Geräten noch nicht vorhanden.

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x46xx (Artikel-Nr. 32299606) ist bei SIEB & MEYER erhältlich.

6.9 Antriebsverstärker 0362147xx

Hinweis

Der Antriebsverstärker 0362147xx wird nicht mehr hergestellt.

Merkmale der SD2S-Gerätevariante 0362147xx:

- ► externes Leistungsnetzteil erforderlich → DC-Bus-Einspeisung
- Sicherheitsschaltung
- für hohe Leistungen ausgelegt

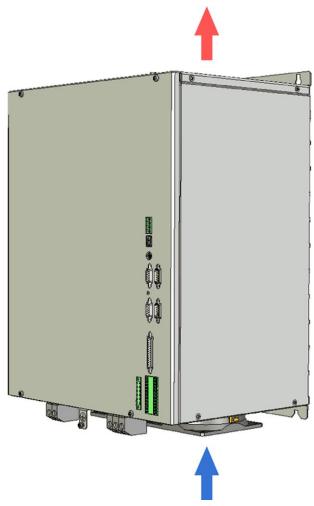


Abb. 44: Geräteansicht 0362147xx

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.9.1 Gehäuseabmessungen

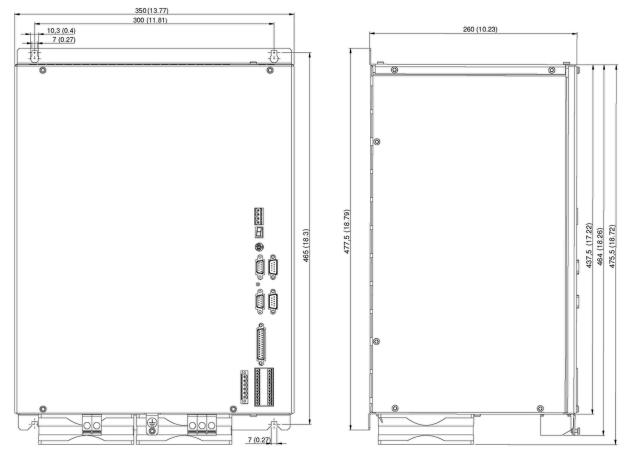
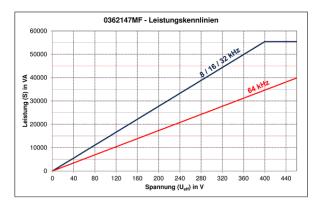


Abb. 45: Maße 0362147xx in mm (inch)

6.9.2 Technische Daten

Hinweis


Für die Gerätevariante 0362147xx ist ein externes Zwischenkreisnetzteil erforderlich.

Einspeisung 480 V_{AC}

Gerätevariante			03621	47MF		
Phasendauerstrom der Endstufe (±3 %)	113 A _S / 80 A _{eff}					
Phasenspitzenstrom der Endstufe (±3 %)			160 A _S /	113 A _{eff}		
Max. Zeit für Spitzenstrom			5	S		
Max. Endstufentemperatur			75	°C		
Max. Ausgangsfrequenz			4000) Hz		
Ausgangsfrequenzstabilität			≤ 0,2	2 %		
Zwischenkreisspannung		280 \	/ _{DC} -10 % bi	s 675 V _{DC} +	10 %	
Ausgangsleistung S1		55,	4 kVA bei 80	0 A _{eff} / 400 \	/ _{AC}	
Netzphasenstrom bei Nennleistung			89 A			
Antriebsfunktion ⁽¹⁾	SER SVC; U			HSF	PWM	
PWM Frequenz [kHz]	8	16	8	16	32	64
Nennstrom S1 [A _{eff}]	80	80	80	80	80	50
Logikversorgung ⁽²⁾			18 bis 28 \	/ _{DC} (2,5 A)		
Verlustleistung Logikteil			12	W		
Verlustleistung Leistungsteil	maximal	5 % der ab	gegebenen l	Motorleistun	g, mindeste	ns 20 W
Überspannungsschwelle			850	V_{DC}		
Unterspannungsschwelle	40 V _{DC}					
Umgebungstemperaturbereich	5 °C bis 60 °C bei höchstens 85 % Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C.					
Schutzart			IP:	20		
Max. Gewicht			31,5	kg .		

⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht der Gerätevarianten"</u>, <u>Seite 24</u>.

⁽²⁾ Die Logikversorgung ist zwingend erforderlich.

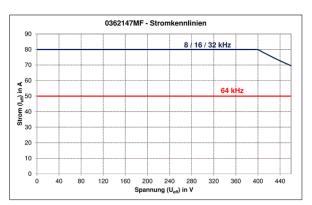


Abb. 46: Ausgangskennlinien 0362147MF im HSPWM-Betrieb

Hinweis

Berücksichtigen Sie auch die Hinweise im <u>Kapitel 12 "Elektrische Leistungsauslegung", Seite 169</u>.

6.9.3 Steckerplatzierung

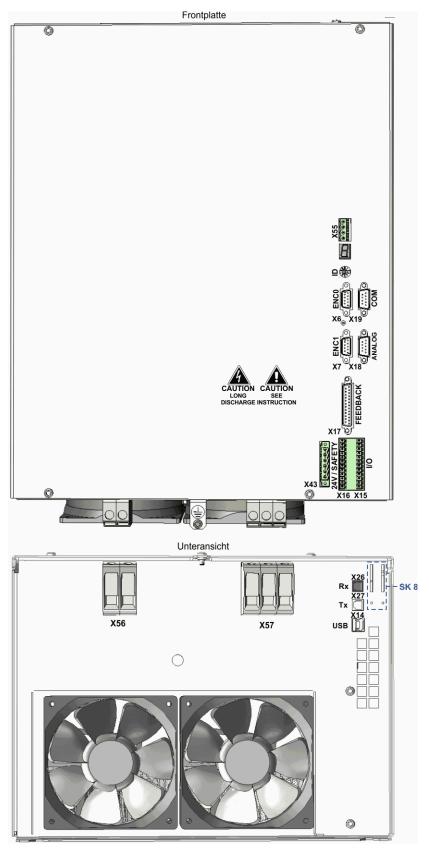


Abb. 47: Anschlüsse auf Gerätevariante 0362147xx

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	<u>Seite 102</u>
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	<u>Seite 103</u>
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X43 Safety	24 V-Versorgung; Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 119</u>
X55	Fehlerbus	Seite 123
X56	Einspeisung	Seite 123
X57	Motoranschluss	Seite 123
SK 8	Befestigungsmöglichkeit für Schirmanschlussklemme SK 8 von Phoenix (im Steckersatz enthalten) ⁽¹⁾	Seite 151

 $^{^{(1)}}$ Die Befestigungslöcher für die Schirmanschlussklemme sind bei älteren Geräten noch nicht vorhanden.

Hinweis

Der passende Steckersatz für die Gerätevariante 0362147xx (Artikel-Nr. 32299564) ist bei SIEB & MEYER erhältlich.

6.10 Kompaktgerät 0362x48xx

Merkmale der SD2S-Gerätevariante 0362x48xx:

- ► integriertes Leistungsnetzteil, 3-phasige Einspeisung (Zur Einhaltung der EMV-Richtlinie 2014/30/EU ist ein externes Netzfilter notwendig.)
- Sicherheitsschaltung
- ► für hohe Leistungen ausgelegt
- ► Kühlung über Lüfter (0362x48MF) oder <u>Wasserkühlung (S. 99)</u> (0362x48OF)
- ▶ 0362<u>1</u>48xx: Standardausführung ohne Feldbusschnittstelle
 - 0362148MF: Facelift ab Geräteversion 4.200 (ausgeliefert ab Juni 2017)
 0362148OF: Facelift ab Geräteversion 4.202 (ausgeliefert ab Juni 2018)
- 0362248xx: Ausführung mit EtherCAT-Schnittstelle

6.10.1 Gerätevariante 0362x48MF

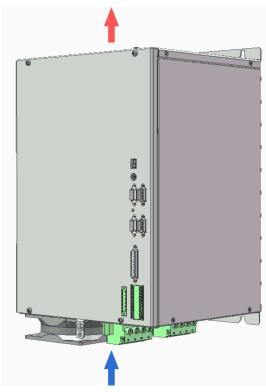


Abb. 48: Geräteansicht 0362148MF (Geräteversion < 4.200)

Abb. 49: Geräteansicht 0362148MF mit Facelift (Geräteversion ≥ 4.200) und 0362248MF

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.10.2 Gerätevariante 0362x48OF

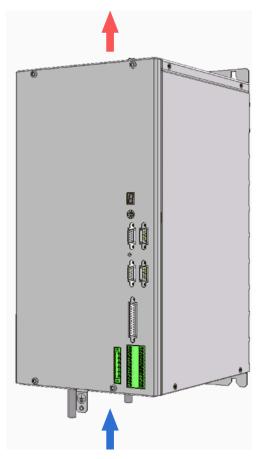


Abb. 50: Geräteansicht 0362148OF (Geräteversion < 4.202): Wasserkühlung über Kupferrohre sowie Luft-kühlung der Elektronik

Abb. 51: Geräteansicht 0362148OF mit Facelift (Geräteversion ≥ 4.202) und 0362248OF: Wasserkühlung über Kupferrohre sowie Luftkühlung der Elektronik

ACHTUNG

Behinderung des Kühlluftstroms

Wird der Luftstrom zur Kühlung des Gerätes behindert, kann es zu Überhitzung und dadurch zu Schäden am Gerät kommen.

- → Achten Sie bei der Montage des Gerätes auf die Luftstromrichtung durch den intern installierten Lüfter [Pfeile].
- → Für ausreichende Kühlung müssen die Belüftungsein- und auslässe in einem Bereich von mind. 10 cm frei gehalten werden.

6.10.3 Gehäuseabmessungen

6.10.3.1 Gerätevariante 0362x48MF

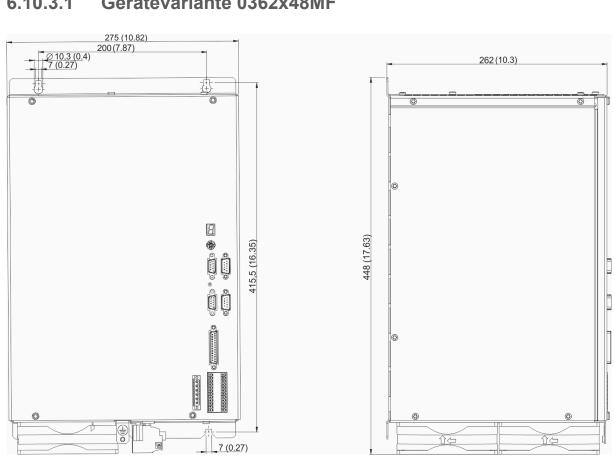


Abb. 52: Maße 0362148MF (Geräteversion < 4.200) in mm (inch)

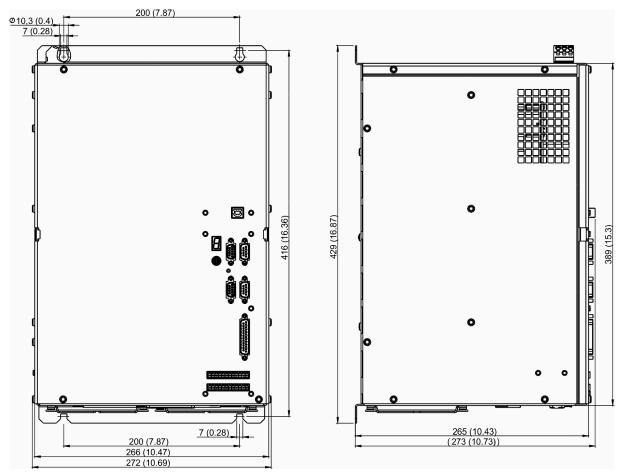


Abb. 53: Maße 0362148MF mit Facelift (Geräteversion ≥ 4.200) und 0362248MF in mm (inch)

6.10.3.2 Gerätevariante 0362x48OF

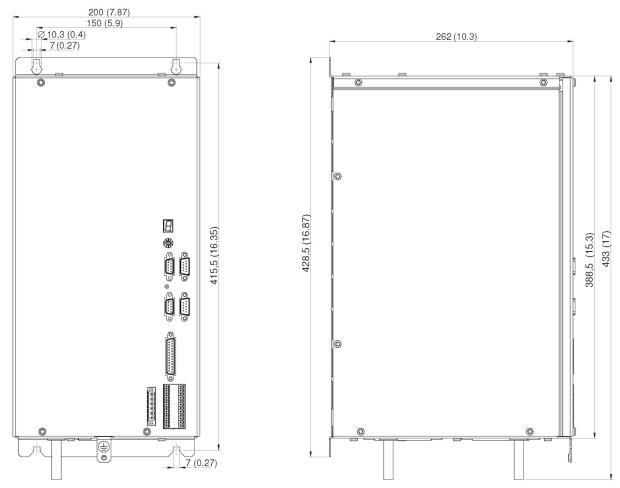


Abb. 54: Maße 0362148OF (Geräteversion < 4.202) in mm (inch)

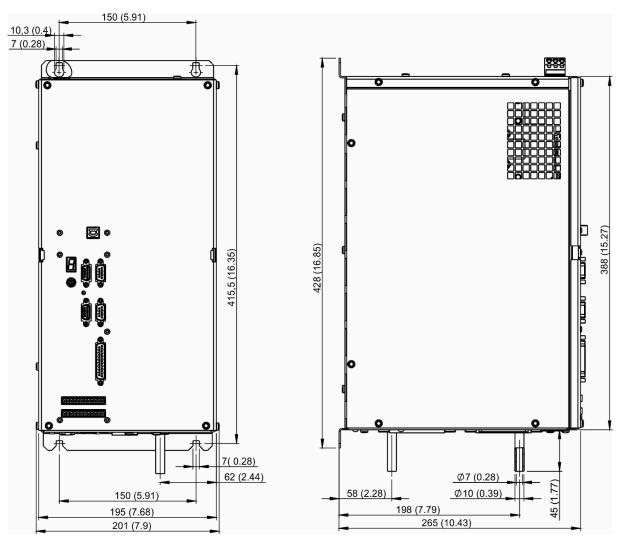


Abb. 55: Maße 0362148OF mit Facelift (Geräteversion \geq 4.202) und 0362248OF in mm (inch)

١

6.10.4 Technische Daten

Einspeisung 480 V_{AC}

Gerätevariante 0362x48MF 0362x48OF Phasendauerstrom der Endstufe (±3 %) 113 A_S / 80 A_{eff} Phasenspitzenstrom der Endstufe 160 A_S / 113 A_{eff} $(\pm 3\%)$ Max. Zeit für Spitzenstrom 3 s Max. Endstufentemperatur 100 °C 4000 Hz Max. Ausgangsfrequenz Ausgangsfrequenzstabilität ≤ 0,2 % $200 V_{AC}$ -10 % bis 480 V_{AC} +10 % Netzeinspeisung (3-phasig) 50 Hz / 60 Hz Erforderliche Netzdrossel 90 A, Artikel-Nr. 13015810⁽¹⁾ Kurzschlussfestigkeit (SCCR) 5000 A Erforderliches Netzfilter 90 A, Artikel-Nr. 35063106⁽²⁾ 100 A Netzsicherung z. B. Siemens 5SD5 20, Bauform DIAZED DIV⁽³⁾ Zwischenkreisspannung 280 V_{DC} -10 % bis 675 V_{DC} +10 % 55,4 kVA bei 80 A_{eff} / 400 V_{AC} Ausgangsleistung S1 Netzphasenstrom bei Nennleistung 89 A Logikversorgung⁽⁴⁾ $18 - 28 V_{DC} (2,5 A / 24 V_{DC})$ 18 - 28 V_{DC} (1 A / V_{DC}) Verlustleistung Logikteil 60 W 24 W Verlustleistung Leistungsteil PWM-Frequenz 8 kHz = 1,5 kW PWM-Frequenz 16 kHz = 2,15 kW Min. externer Ballastwiderstand 12 Ω max. Impulsbelastung 53 kWs Interner Ballastwiderstand 16,5 Ω / 500 W max. Impulsbelastung 34 kWs Ballastschwelle 800 V_{DC} Überspannungsschwelle $850 V_{DC}$ Unterspannungsschwelle $40 V_{DC}$ 5 °C bis 60 °C bei höchstens 85 % Umgebungstemperaturbereich Luftfeuchtigkeit (ohne Betauung) 100% Nennstrom bis maximal 40 °C. Darüber hinaus muss eine Leistungsreduzierung erfolgen. Es gilt: -1,5% pro 1 °C. IP20 Schutzart Max. Gewicht 19 15

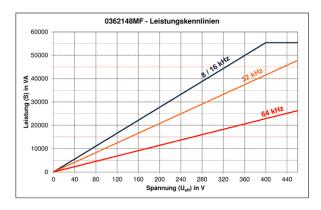
⁽⁴⁾ Die Logikversorgung ist zwingend erforderlich.

Wasserkühlung 0362x48OF			
Kühlkörper	Aluminiumkühlkörper mit 2 Kupferrohren ⁽¹⁾		
Rohrdurchmesser (außen)	10 mm		
Max. Kühlwassertemperatur	40 °C		
Min. Durchflussmenge	4 l/min		

⁽¹⁾ Edelstahlrohre sind auf Anfrage möglich.

⁽¹⁾ Weitere Netzdrosseln, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe Seite 195).

⁽²⁾ Zur Einhaltung der EMV-Richtlinie 2014/30/EU muss ein externes Netzfilter verwendet werden. Weitere Netzfilter, die bei SIEB & MEYER erhältlich sind, finden Sie im Anhang (siehe <u>Seite 195</u>).


⁽³⁾ Eine Übersicht aller Netzsicherungen, die für die SD2S-Serie geeignet sind, finden Sie im Anhang (siehe <u>Seite 193</u>).

Nennstrom Derating

Antriebsfunktion ⁽¹⁾		D; SVC; PWM	HSPWM			
PWM Frequenz [kHz]	8	16	8	16	32	64
0362x48MF Nennstrom S1 [A _{eff}]	80	80	80	80	60	33
0362x48OF Nennstrom S1 [A _{eff}]	80	80	80	80	80	70

⁽¹⁾ Genauere Informationen zu den möglichen Antriebsfunktionen Ihres Gerätes finden Sie im <u>Kapitel 5.4 "Funktionsübersicht der Gerätevarianten", Seite 24</u>.

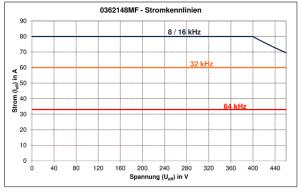
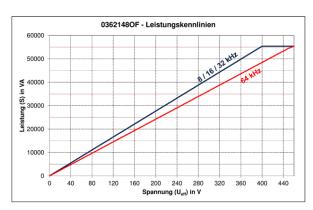



Abb. 56: Ausgangskennlinien 0362x48MF im HSPWM-Betrieb

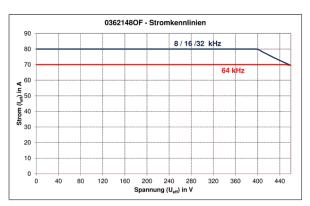


Abb. 57: Ausgangskennlinien 0362x48OF im HSPWM-Betrieb

6.10.5 Steckerplatzierung

6.10.5.1 Gerätevariante 0362x48MF

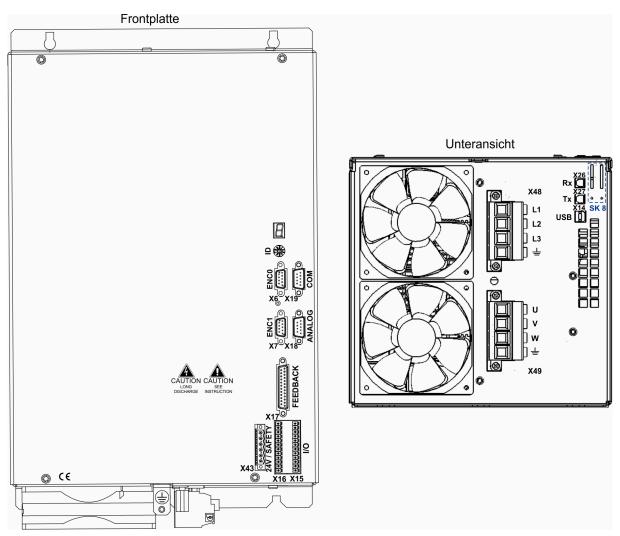


Abb. 58: Anschlüsse 0362148MF (Geräteversion < 4.200)

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362248MF vorhanden.

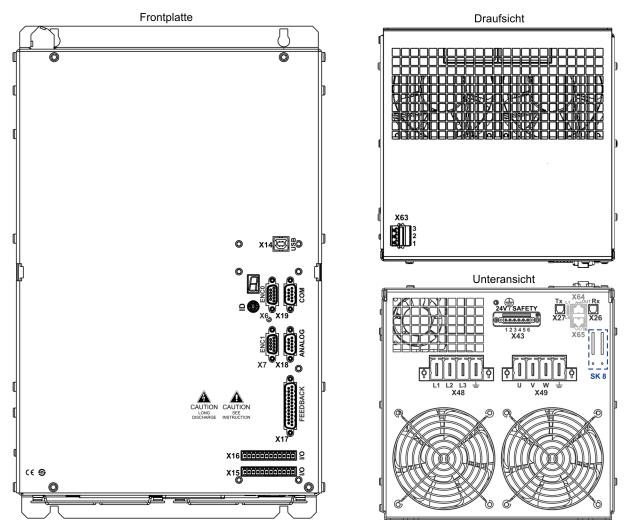


Abb. 59: Anschlüsse 0362148MF mit Facelift (Geräteversion ≥ 4.200) und 0362248MF

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X6 ENC0	Encoder 0 Eingang	<u>Seite 102</u>
X7 ENC1	Encoder 1 Eingang / Ausgang	<u>Seite 103</u>
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	<u>Seite 104</u>
X16 I/O	Digitale Eingänge	<u>Seite 107</u>
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	<u>Seite 112</u>
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	<u>Seite 114</u>
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X43 Safety	24 V-Versorgung; Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 119</u>
X48	Einspeisung	Seite 122
X49	Motoranschluss	Seite 122
X63	Externer Ballastwiderstand	Seite 124

Anschluss	Bedeutung	Beschreibung
X64 OUT	EtherCAT-Slave-Ausgang	<u>Seite 125</u>
X65 IN	EtherCAT-Slave-Eingang	
(4)	Gehäuseerdung über PE-Lasche (Geräteversion < 4.200)	_
	Gehäuseerdung über PE-Schraube an der Unterseite (nach Facelift: ab Geräteversion 4.200)	<u>Seite 155</u>
SK 8	Befestigungsmöglichkeit für Schirmanschlussklemme SK 8 von	<u>Seite 151</u>
	Phoenix (im Steckersatz enthalten) ⁽¹⁾	

⁽¹⁾ Die Befestigungslöcher für die Schirmanschlussklemme sind bei älteren Geräten noch nicht vorhanden.

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x48MF (Artikel-Nr. 32299563) ist bei SIEB & MEYER erhältlich.

6.10.5.2 Gerätevariante 0362x48OF

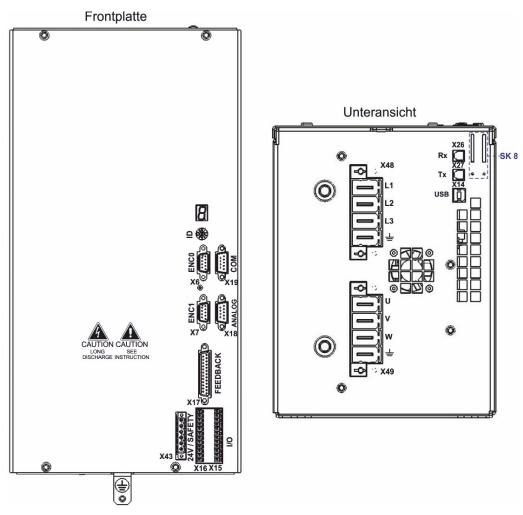


Abb. 60: Anschlüsse 0362148OF (Geräteversion < 4.202)

Die grau gekennzeichneten Stecker X64 und X65 (EtherCAT-Option) sind nur auf der Gerätevariante 0362248OF vorhanden:

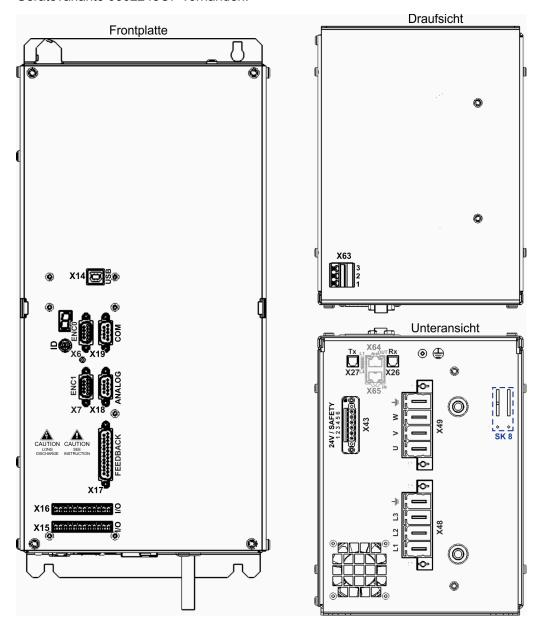


Abb. 61: Anschlüsse 0362148OF mit Facelift (Geräteversion \geq 4.202) und 0362248OF

Anschluss	Bedeutung	Beschreibung
ID	Adresswahlschalter des Gerätes	Seite 102
X6 ENC0	Encoder 0 Eingang	Seite 102
X7 ENC1	Encoder 1 Eingang / Ausgang	Seite 103
X14 USB	USB-Schnittstelle Parametrierung	<u>Seite 104</u>
X15 I/O	Digitale Ausgänge	Seite 104
X16 I/O	Digitale Eingänge	Seite 107
X17 Feedback	Sinus-Cosinus-Geber / Inkrementalgeber TTL / Hall-Geber / linearer Hall-Geber / Feldplattengeber / EnDat-Geber / Hiperface-Geber	Seite 110
X18 Analog	Analogsignale	Seite 112
X19 COM	COM-Schnittstelle	<u>Seite 113</u>
X26 Rx	SERVOLINK 4 optischer Eingang	Seite 114
X27 Tx	SERVOLINK 4 optischer Ausgang	<u>Seite 114</u>
X43 Safety	24 V-Versorgung; Sicherheitsschaltung / Anlaufsperre (STO)	<u>Seite 119</u>
X48	Einspeisung	Seite 122

Anschluss	Bedeutung	Beschreibung
X49	Motoranschluss	Seite 122
X63	Externer Ballastwiderstand	Seite 124
X64 OUT	EtherCAT-Slave-Ausgang	Seite 125
X65 IN	EtherCAT-Slave-Eingang	
	Gehäuseerdung über PE-Lasche (Geräteversion < 4.202)	_
	Gehäuseerdung über PE-Schraube an der Unterseite (nach Facelift: ab Geräteversion 4.202)	Seite 155
SK 8	Befestigungsmöglichkeit für Schirmanschlussklemme SK 8 von	<u>Seite 151</u>
	Phoenix (im Steckersatz enthalten) ⁽¹⁾	

⁽¹⁾ Die Befestigungslöcher für die Schirmanschlussklemme sind bei älteren Geräten noch nicht vorhanden.

Hinweis

Der passende Steckersatz für die Gerätevariante 0362x48OF (Artikel-Nr. 32299563) ist bei SIEB & MEYER erhältlich.

7 Montage

7.1 Rückwandmontage

Hinweis

SD2S-Geräte müssen in einen Schaltschrank eingebaut werden.

Das Gerät ist für eine senkrechte Rückwandmontage vorgesehen. Andere Aufstellpositionen sind nach Rücksprache mit SIEB & MEYER möglich.

Passende Befestigungsschrauben: M6x12 nach ISO 4762

- Festigkeitsklasse: 8.8
- ► Unterlegscheiben: M6 nach ISO 7091 (Verwendung empfohlen)
- Mindesteinschraubtiefe in der Montageplatte: 8 mm bei Stahlblech, 15 mm bei Aluminiumblech

Hinweis

Die Geräterückwand muss plan an der Montageplatte anliegen. Wenn Sie mit Einzugsgewinden arbeiten, achten Sie darauf, dass diese nicht aus der Montageplatte herausragen (überstehen).

7.2 Wasserkühlung (0362x48OF)

A VORSICHT

Risiken im Umgang mit Kühlflüssigkeiten

- → Kühlflüssigkeiten können Gesundheits- und Umweltschäden verursachen: Vermeiden Sie Berührung mit Augen und Haut. Entsorgen Sie Kühlflüssigkeiten umweltgerecht, gemäß den lokalen Bestimmungen.
- → Kühlflüssigkeiten können über 70 °C heiß werden und unter hohem Druck stehen: Verwenden Sie Auffangeinrichtungen für austretende Kühlflüssigkeiten.

Beachten Sie die folgenden Punkte bei der Kühlung mit Flüssigkeiten:

- Das Kühlmittel muss auf Wasser basieren und Korrosionsschutzmittel enthalten.
- Zusatzstoffe gegen Pilzbildung können Verstopfungen der Kühlleitungen verhindern.
- Das Kühlmittel muss gereinigt sein.
- ► Es dürfen keine Festkörper mitgeführt werden.
- ► Eine Systemüberwachung sollte die folgenden Parameter prüfen:
 - Temperatur
 - maximaler Druck
 - Druckverlust (Leck im System)
 - Flussmenge
- ▶ Das Kühlmittel muss chemisch neutral reagieren.
- ▶ Der Betriebsdruck darf 6 bar nicht überschreiten.
- ▶ Betauung am Kühlkörper und den angeschlossenen Kühlmittelverbindungen muss verhindert werden. (Betauung entsteht insbesondere bei niedriger Kühlmitteltemperatur durch hohe Luftfeuchtigkeit verbunden mit hohen Temperaturen.)

7.2.1 Anschluss des Kühlaggregats

Zur Wärmeabfuhr muss der Gerätekühlkörper mit einem Kühlaggregat verbunden werden.

A GEFAHR

Hohe Spannungen in Verbindung mit Kühlflüssigkeiten

- → Bevor Sie Arbeiten am Kühlkreislauf vornehmen, müssen sämtliche elektrische Betriebsmittel, die sich im Gefahrenbereich befinden, spannungsfrei geschaltet sein (z. B. Schaltschrank). Warten Sie außerdem die entsprechenden Entladezeiten der Betriebsmittel ab.
- → Prüfen Sie das Kühlsystem auf Dichtigkeit, bevor Sie elektrische Betriebsmittel, die sich im Gefahrenbereich befinden (z. B. Schaltschrank), an das Versorgungsnetz anschließen.

ACHTUNG

Niedriger Kühlmitteldurchfluss

Bei einem zu niedrigen Kühlmitteldurchfluss kann es zu einer Überhitzung des Antriebs und der angeschlossenen Komponenten kommen.

→ Nach dem Befüllen muss der gesamte Kühlkreislauf entlüftet werden. Wir empfehlen dringend den Einsatz von Durchflusssensoren.

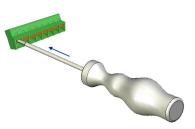
Geräte mit Kühlwasserrohren

In welcher Form der Anschluss zum Kühlaggregat hergestellt wird, ist abhängig von den Bedingungen in der Gesamtanlage. Eine Möglichkeit sind Schneidringe mit passenden Verschraubungen. Die Verbindungselemente sind z. B. bei den folgenden Firmen erhältlich:

- ► EMB Eifeler Maschinenbau GmbH: http://www.emb-eifel.de/
- ► RO-FI Edelstahlhandel GmbH: http://www.rofi.de

Geräte mit Gewinden

An der Unterseite des Geräts befindet sich ein Anschlussbereich mit Innengewinden. In welcher Form der Anschluss zum Kühlaggregat hergestellt wird, ist abhängig von den Bedingungen in der Gesamtanlage. Eine Möglichkeit sind gerade Klemmringverschraubungen.


8 Anschlussbelegung

8.1 Bedienung der Klemmenanschlüsse

8.1.1 Federkraftanschluss

Die einzelnen Leiter werden per Federkraftanschluss in der Klemme fixiert. Zum Einstecken/ Herauslösen eines Leiters, gehen Sie wie folgt vor:

- Betätigen Sie den Federkraftanschluss durch Drücken mit einem Schraubendreher wie in der Abbildung gezeigt.
- Schieben Sie den Leiter in die Rastkammer bzw. ziehen Sie ihn aus der Rastkammer heraus.
- ▶ Lösen Sie den Schraubendreher wieder.

Hinweis

Massive Drähte oder mit Aderendhülsen versehene Anschlussleitungen können ohne Werkzeug in die Rastkammer geschoben werden.

8.1.2 Click & Lock-Verriegelung (STCL-Stecker)

Einsetzen des Steckers [A]

► Stecken Sie den Stecker wie in der Abbildung dargestellt in das Grundgehäuse, bis der Stecker einrastet (1.).

Hinweis: Beide Schieber müssen komplett zurückgeschoben sein, damit der Stecker vollständig einrastet und ungewolltes Lösen des Steckers (z. B. bei Vibrationen) vermieden wird.

Entfernen des Steckers [B]

▶ Bewegen Sie die beiden Schieber auf dem Stecker wie in der Abbildung dargestellt in Richtung des Geräts (1.) und ziehen Sie anschließend den Stecker heraus (2.).

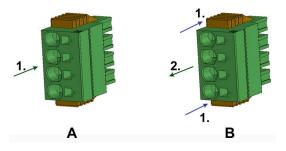
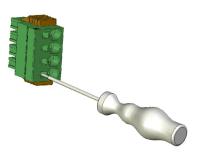


Abb. 62: Stecker einsetzen [A] und entfernen [B]



8.1.3 Push-in-Technik

Reihenklemmen mit Push-in-Technik – kurz PIT genannt – arbeiten nach dem Druckfederprinzip:

Die Kontaktfeder drückt den Leiter gegen die stromführende Kupferschiene. Die besondere Federkontur ermöglicht eine direkte und werkzeuglose Verdrahtung von starren und flexiblen Leitern, die mit Aderendhülse oder verdichteten Leiterenden vorkonfektioniert sind.

- Beim Einführen des Leiters in die Klemmstelle öffnet die Feder selbsttätig.
- Mit einem Schraubendreher kann die Klemme einfach geöffnet werden, um den Leiter zu lösen.

8.2 ID-Schalter (Adresswahlschalter)

⇒ Stellen Sie die Adresse des Moduls mit dem Adresswahlschalter ein. 16 Adressen stehen zur Verfügung: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. (Bei Anschluss über SERVOLINK 4 stehen nur 12 Adressen zur Verfügung (0 bis B).)

Hinweis

Mehrere Geräte in einem System müssen unterschiedlich adressiert sein, damit sie von der Software eindeutig identifiziert werden können.

8.3 X6 – Encoder 0

Encoder 0 Eingang, z. B.: für Längenmesssysteme

Dieser Anschluss ist bei SD2S Light (036212xxx, 0362x43xx) nicht vorhanden.

9-polige D-Sub-Buchse

Х6	Pin	E/A	Name	Bedeutung
	1	Е	UA+	Spur A+
	2	Е	UA-	Spur A-
	3	Е	UN+	Nullimpuls+
	4	E	UN-	Nullimpuls-
6 1	5	E/A	GND	Masse
	6	Е	UB+	Spur B+
	7	Е	UB-	Spur B-
	8	Α	VCC_ENC	5,3 V Versorgungsspannung
	9	Е	ERR	Messsystemfehler

Schraubbolzen Flansch: max. Anzugsdrehmoment = 0,7 Nm

Verwandte Themen

X6, X7 – Inkrementalgeber mit TTL-Signalen, Seite 127

8.4 X7 – Encoder 1 / Encoderemulation

Encoder-1-Eingang und Encoder-Emulationsausgang, z. B.: für Tiefenmesssysteme Dieser Anschluss ist bei SD2S Light (036212xxx, 0362x43xx) nicht vorhanden.

9-polige D-Sub-Buchse

X7	Pin	E/A	Name	Bedeutung
	1	E/A	UA+	Spur-A+
	2	E/A	UA-	Spur-A-
	3	E/A	UN+	Nullimpuls+
	4	E/A	UN-	Nullimpuls-
0 0 - 0	5	E/A	GND	Masse
	6	E/A	UB+	Spur-B+
	7	E/A	UB-	Spur-B-
	8	Α	VCC_ENC	5,3 V Versorgungsspannung
	9	E	ERR	Messsystemfehler

Schraubbolzen Flansch: max. Anzugsdrehmoment = 0,7 Nm

Verwandte Themen

X6, X7 – Inkrementalgeber mit TTL-Signalen, Seite 127

X7 - Geberemulation, Seite 128

8.5 X10 – Safety (STO)

Sicherheitsschaltung und Anlaufsperre (STO)

Bei älteren Geräten der Variante 0362140xx ist der Safety-Anschluss nicht vorhanden.

6-poliger Mini-Combicon Stecker, passend für Gegenstecker MC 1,5/ 6-ST-3,81 (Phoenix)

Gegenstecker X10	Pin	E/A	Name	Bedeutung
	1	E	SAFEA / OSSD1	Freigabe der Sicherheitsschaltung ► Dauerlast bei 24 V > 160 mA/24 V, abhängig von der Geräteleistung ► Einschaltspitzenstrom pro Gerät kann 8 A/24 V in den ersten 2 ms übersteigen.
5	2	-	GND	Bezugspotential
G G	3	Е	SAFEB / OSSD2	Freigabe der Sicherheitsschaltung ► Dauerlast ca. 15 mA/24 V ► Einschaltspitzenstrom ist im Normalfall vernachlässigbar.
	4		n.c.	
	5		n.c.	
	6	Α	24 V ⁽¹⁾	Logikversorgung 18 bis 28 Volt (ungeregelt)

⁽¹⁾ Der 24-V-Ausgang ist nicht zur Versorgung von externen Sicherheitsschaltungen geeignet, da die Normen hierfür eine externe Versorgung verlangen. Wird die Sicherheitsfunktion (STO) nicht benötigt, dient diese Spannung ausschließlich zum Brücken der Pins 1 und 3.

Angaben zu den Klemmanschlüssen

- ► Leiterquerschnitt starr/flexibel: 0,14 bis 1,5 mm²
- ► Anzugsdrehmoment: 0,22 bis 0,25 Nm

Hinweis

Das Leistungsteil ist nur aktiv, wenn SAFEA und SAFEB angeschlossen sind. Wird die Sicherheitsfunktion (STO) nicht benötigt, müssen Pin 1 und Pin 3 zu Pin 6 gebrückt werden.

Verwandte Themen

X10/ X43 - Sicherheitsschaltung (STO), Seite 129

Sicherheitsschaltung / Anlaufsperre (STO), Seite 173

Anschlussprinzip, Seite 188

8.6 X14 – USB

Kommunikationsschnittstelle zum angeschlossenen PC

4-polige USB-Buchse, Typ B

X14	Pin	E/A	Name	Beschreibung
	1	-	VCC	5V Spannungsversorgung für USB
1 4	2	E/A	DN	Daten-
2 3	3	E/A	DP	Daten+
	4	E/A	GND	Masse

Kompatibilität mit USB 3.0

Die folgende Tabelle gibt an, ab welcher Geräteversion die USB-Schnittstelle kompatibel mit USB 3.0 ist:

Gerätevariante	Geräteversion
0362x40xx, 0362120xx	4.032
0362x41xx, 0362121xx	4.035
0362x42xx	4.132
0362x43xx	4.132
0362144xx	_
0362x45xx	4.201
0362x46xx	4.201
0362147xx	_
0362x48xx	4.201

Verwandte Themen

Kapitel C "Anschlussprinzip", Seite 188

8.7 X15 – Digitale Ausgänge

Hinweis

Wenn Sie die digitalen Ein- und Ausgänge nutzen möchten, muss Pin 9 mit 24 V beschaltet werden. Diese können Sie entweder von Pin 10 (X15) brücken (max. 0,3 A) oder von einer externen 24 V-Quelle einspeisen.

Um auch nach der gewollten Trennung der Haupteinspeisung den Fehlerstatus anzeigen zu lassen, können Sie die Logikversorgung erhalten, indem Sie Pin 8 mit 24 V (0,5 A) beschalten.

Die Funktionen der digitalen Ausgänge können je nach Antriebsfunktion variabel definiert werden. Die gewünschte Funktion stellen Sie in der Software *drivemaster2* ein.

Hinweis

Einige Ein-/Ausgangsfunktionen sind bei älteren Hardware- oder Softwareversionen noch nicht verfügbar.

8.7.1 Digitale Ausgänge – SERVO / VECTOR

12-poliger Mini-Combicon Stecker, passend für Gegenstecker MC 1,5/ 12-ST-3,81 (Phoenix)

Gegenste-	Pin	E/A	Name	Parametrierbare Funktionen	
cker X15	1	A	ОПТО	Betriebsbereit Typ 1 (mit Netz BTB) Betriebsbereit Typ 2 (ohne Netz BTB)	 Keine Funktion M01 – Meldung Leistungsendstufe aktiv M02 – Meldung Betrieb freigegeben M03 – Meldung Antriebsfehler
4 5 6 	2	Α	OUT1		
	3	Α	OUT2	► M12 – Drehzahl Null	► W07 – Motortemperatur
	4	Α	OUT3	► M12 – Drehzahl Null	► W09 – Unterspannung Leistungsend-
DAGAGARDAG CONTINUENTO 101112	5	A	OUT4	► M12 – Drehzahl Null	stufe W11 – Schleppfehler W12 – Geschwindigkeitsfehler W17 – Kommutierung nicht vorhanden W24 – Warnungsschwelle "Strom" W26 – Warnungsschwelle "Überstrom"
	6	Е	IN8	 ▶ Keine Funktion ▶ Geschwindigkeitsrichtung ▶ P-Regler ▶ Fehlerreset ▶ Externe Hardware OK ▶ Low gain Kpn ▶ Docking Funktion ▶ Teach Leerlaufstrom ▶ Parametersatz Bit 5 ▶ MOP up ▶ MOP down ▶ Reset Kommutierung 	
	7 A PULSE OUT 8 E VCC EXT ⁽¹⁾ 24-V-Logikversorgung bei Netzausfall (0,5 A			Drehzahlimpulse	
			usfall (0,5 A)		
	9	Е	VCC IO	24-V-Versorgung für die Ausgäng	ge
	10 A VC		VCC OUT ⁽²⁾	24-V-Hilfsspannung für die Ausgänge (24 V ±10 %, ungeregelt, max. 0,25 A)	
	11	E/A	GND	Masse	(Pin codiert)
	12	E/A	GND	Masse	

⁽¹⁾ Nicht beschalten bei den Gerätevarianten 0362144xx bis 0362x48xx: Die 24-V-Versorgung wird über Stecker X43 eingespeist (siehe Kapitel 8.18 "X43 – 24 V / Safety (STO)", Seite 119).

Angaben zu den Klemmanschlüssen

► Leiterquerschnitt starr/flexibel: 0,14 bis 1,5 mm²

► Anzugsdrehmoment: 0,22 bis 0,25 Nm

Verwandte Themen

Kapitel 9.4.1 "Digitale Ausgänge", Seite 130

⁽²⁾ Es ist kein Parallelbetrieb mit weiteren SD2S-Antriebsverstärkern oder externen Komponenten möglich.

8.7.2 Digitale Ausgänge – HSPWM, HSBLOCK/FPAM, HSPAM/UF

12-poliger Mini-Combicon Stecker, passend für Gegenstecker MC 1,5/ 12-ST-3,81 (Phoenix)

Gegenste- cker X15	Pin	E/A	Name	Parametrierbare Funktionen	
1 2 3 3 B	1	Α	OUT0	 Betriebsbereit Typ 1 (mit Netz BTB) Betriebsbereit Typ 2 (ohne Netz BTB) 	 Keine Funktion M01 – Meldung Leistungsendstufe aktiv M02 – Meldung Betrieb freigegeben
	2	Α	OUT1		M03 – Meldung AntriebsfehlerM10 – Sollwert erreicht
	3	Α	OUT2		► M11 – Stromgrenze erreicht
	4	Α	OUT3		 M12 – Drehzahl Null W04 – Auslastung Leistungsendstufe
	5	A	OUT4		 W04 – Austastung Leistungsendstule W05 – Motorauslastung W07 – Motortemperatur W09 – Unterspannung Leistungsendstufe W12 – Geschwindigkeitsfehler W24 – Warnungsschwelle "Strom" W26 – Warnungsschwelle "Überstrom"
	6	E	IN8 / PULSE IN	► Impulsgeber 24 V; Anzeige, v	wenn Motorfeedback = NAMUR-Sensor wenn Motorfeedback = Impulsgeber 24 V Anzeige, wenn Motorfeedback = digitale
	7	Α	PULSE OUT	Drehzahlimpulse	
	8	E	VCC EXT ⁽³⁾	24-V-Logikversorgung bei Netza	ausfall (0,5 A)
	9	Е	VCC IO	24-V-Versorgung für die Ausgär	
	10	Α	VCC OUT ⁽⁴⁾	24-V-Hilfsspannung für die Aus 0,25 A)	gänge (24 V ±10 %, ungeregelt, max.
	11	E/A	GND	Masse	(Pin codiert)
	12	E/A	GND	Masse	

⁽¹⁾ Die Funktion NAMUR wird ab Geräteversion 3.201 unterstützt. Für die Gerätevariante 0362x41xx gilt dies ab Geräteversion 3.301.

Angaben zu den Klemmanschlüssen

► Leiterquerschnitt starr/flexibel: 0,14 bis 1,5 mm²

► Anzugsdrehmoment: 0,22 bis 0,25 Nm

Verwandte Themen

Digitale Ausgänge, Seite 130

NAMUR-Sensor, Seite 130

PULSE IN 24 V, Seite 131

Digitale Feldplatte / GMR, Seite 131

⁽²⁾ Die Funktion "digitale Feldplatte / GMR" wird ab drivemaster2-Version 1.9 Build 080 unterstützt.

⁽³⁾ Nicht beschalten bei den Gerätevarianten 0362144xx bis 0362x48xx: Die 24-V-Versorgung wird über Stecker X43 eingespeist (siehe Kapitel 8.18 "X43 – 24 V / Safety (STO)", Seite 119).

⁽⁴⁾ Es ist kein Parallelbetrieb mit weiteren SD2S-Antriebsverstärkern oder externen Komponenten möglich.

8.8 X16 – Digitale Eingänge

Die Funktionen der digitalen Eingänge können je nach Antriebsfunktion variabel definiert werden. Die gewünschte Funktion stellen Sie in der Software *drivemaster2* ein.

Hinweis

Einige Ein-/Ausgangsfunktionen sind bei älteren Hardware- oder Softwareversionen noch nicht verfügbar.

8.8.1 Digitale Eingänge – SERVO / VECTOR

12-poliger Mini-Combicon Stecker, passend für Gegenstecker MC 1,5/ 12-ST-3,81 (Phoenix)

Gegenste- cker X16	Pin	E/A	Name	Parametrierbare Funktionen		
	1	E	IN0	 ▶ Keine Funktion ▶ Regler Ein Typ 1 (ohne Flankenauswertung) ▶ Regler Ein Typ 2 (mit positiver Flanke) 		
	2	E	IN1	 Keine Funktion Schnellhalt Typ 1 (mit Bremsrampe) Schnellhalt Typ 2 (mit Schnellhaltrampe) Schnellhalt Typ 3 (an der Stromgrenze) Schnellhalt Typ 4 (Speed Enable) Schnellhalt Typ 5 (mit Bremsrampe und Regler aus) Schnellhalt Typ 6 (mit Schnellhaltrampe und Regler aus) Schnellhalt Typ 7 (mit Bremsrampe und Reset) Schnellhalt Typ 8 (mit Schnellhaltrampe und Reset) Schnellhalt Typ 8 (mit Schnellhaltrampe und Reset) Betrieb freigeben Betrieb freigegeben mit Fehlerreset MOP up MOP down Reduzierung Strombegrenzung / Imax 		
	3	Е	IN2 ⁽¹⁾	 Keine Funktion Neg. Endschalter Typ 1 (Geschwindigkeitsregler als P-Regler) Neg. Endschalter Typ 2 (Geschwindigkeitsregler als Pl-Regler) Betrieb freigeben Betrieb freigegeben mit Fehlerreset Fehlerreset Externe Hardware OK Geschwindigkeitsrichtung MOP up MOP down Reduzierung Strombegrenzung / Imax 		
	4	Е	IN3 ⁽¹⁾	 Keine Funktion Pos. Endschalter Typ 1 (Geschwindigkeitsregler als P-Regler) Pos. Endschalter Typ 2 (Geschwindigkeitsregler als Pl-Regler) Parametersatz Bit 0 MOP up MOP down 		
	5	Е	IN4 ⁽¹⁾	 ► Freigabe Differenzenmesssystem ► Parametersatz Bit 1 ► Interner Sollwert Bit 3 ► Keine Funktion ► Geschwindigkeitsrichtung ► P-Regler ► Fehlerreset 		
	6	E	IN5	 ▶ Parametersatz Bit 2 ▶ Interner Sollwert Bit 2 ▶ Externe Hardware OK ▶ Low gain Kpn ▶ Parametersatz Bit 2 ▶ Externe Hardware OK ▶ Low gain Kpn 		
	7	E	IN6	 ▶ Parametersatz Bit 3 ▶ Interner Sollwert Bit 1 ▶ MOP up 		
	8	Е	IN7	 ▶ Parametersatz Bit 4 ▶ Interner Sollwert Bit 0 ▶ Reset Kommutierung 		
	9	Е	TEMP	Sensor Motortemperatur (gegen GND)		
	10	Е	AIN0+ ⁽²⁾	Drehzahlsollwert (Massebezug) (Pin codiert)		
	11	E/A	GND	Masse		
	12	E/A	GND	Masse		

⁽¹⁾ Siehe auch X17.

- ► 0362x40xx / 0362120xx, 0362x41xx / 0362121xx: ab Geräteversion 4.030
- ► 0362x42xx, 0362x43xx: ab Geräteversion 4.130
- ▶ 0362144xx: ab Geräteversion 4.201
- ► 0362145xx, 0362148xx: ab Geräteversion 4.003
- ▶ 0362146xx: ab Geräteversion 4.006

Bei älteren Geräteversionen ist evtl. eine zusätzlich Brücke an Stecker X18 zwischen Pin 4 und Pin 7 notwendig. Single-ended bedeutet, dass es kein Differenzsignal ist, d. h. es gibt kein Negativsignal, sondern das Bezugspotential ist GND. => störanfälliger (unbalanced)

Angaben zu den Klemmanschlüssen

► Leiterquerschnitt starr/flexibel: 0,14 bis 1,5 mm²

► Anzugsdrehmoment: 0,22 bis 0,25 Nm

Verwandte Themen

X16/17 - Digitale Eingänge, Seite 133

Motortemperaturfühler, Seite 146

8.8.2 Digitale Eingänge – HSPWM, HSBLOCK/FPAM, HSPAM/UF

Werden mehr als 8 Parametersätze verwendet, können nicht mehr alle Funktionen frei vergeben werden. Werden mehr als 32 Parametersätze verwendet, kann das Messsystem NAMUR nicht mehr verwendet werden.

12-poliger Mini-Combicon Stecker, passend für Gegenstecker MC 1,5/ 12-ST-3,81 (Phoenix)

Gegenste- cker X16	Pin	E/A	Name	Parametrierbare Funktionen
1 2	1	Е	IN0	 Keine Funktion Regler Ein Typ 1 (ohne Flankenauswertung) Regler Ein Typ 2 (mit positiver Flanke)
9494949494949494949 3 4 5 6 7 8 9 1011	2	Ш	IN1	 Keine Funktion Schnellhalt Typ 5 (mit Bremsrampe und Regler aus) Schnellhalt Typ 6 (mit Schnellhaltrampe und Regler aus) Schnellhalt Typ 7 (mit Bremsrampe und Reset) Schnellhalt Typ 8 (mit Schnellhaltrampe und Reset) Betrieb freigeben Betrieb freigegeben mit Fehlerreset MOP up MOP down
12	3	Е	IN2 ⁽¹⁾	 Keine Funktion Betrieb freigeben Betrieb freigegeben mit Fehlerreset Fehlerreset Externe Hardware OK Geschwindigkeitsrichtung MOP up MOP down
	4	E	IN3 ⁽¹⁾	 ▶ Keine Funktion ▶ Parametersatz Bit 0 ▶ MOP up ▶ MOP down
	5	E	IN4 ⁽¹⁾	 ▶ Keine Funktion ▶ Parametersatz Bit 1 ▶ Interner Sollwert Bit 3 ▶ MOP up ▶ MOP down

⁽²⁾ Um diesen analogen Eingang zu nutzen, muss in der Software *drivemaster2* für "Analog-In 0 " der Parameter "Single-ended" aktiviert sein. Dies gilt ab den folgenden Geräteversionen:

Gegenste- cker X16	Pin	E/A	Name	Parametrierbare Funktionen	
	6	E	IN5	 Keine Funktion Parametersatz Bit 2 Interner Sollwert Bit 2 MOP up MOP down 	
	7	Е	IN6	 Keine Funktion Fehlerreset Externe Hardware OK Geschwindigkeitsrichtung Teach Leerlaufstrom Parametersatz Bit 3 Interner Sollwert Bit 1 MOP up MOP down 	
	8	Е	IN7	 Keine Funktion Fehlerreset Externe Hardware OK Geschwindigkeitsrichtung Teach Leerlaufstrom Parametersatz Bit 4 Interner Sollwert Bit 0 MOP up MOP down 	
	9	Е	TEMP	Sensor Motortemperatur (gegen GND)	
	10	E	AIN0+ ⁽²⁾	Drehzahlsollwert (Massebezug) (Pin co	
	11	E/A	GND	Masse	
	12	E/A	GND	Masse	

⁽¹⁾ Siehe auch X17.

- ► 0362x40xx/0362120xx, 0362x41xx/0362121xx: ab Geräteversion 4.030
- ► 0362x42xx, 0362x43xx: ab Geräteversion 4.130
- ▶ 0362144xx: ab Geräteversion 4.201
- ► 0362145xx/0362148xx: ab Geräteversion 4.003
- ▶ 0362146xx: ab Geräteversion 4.006

Bei älteren Geräteversionen ist evtl. eine zusätzlich Brücke an Stecker X18 zwischen Pin 4 und Pin 7 notwendig.

Angaben zu den Klemmanschlüssen

- ► Leiterquerschnitt starr/flexibel: 0,14 bis 1,5 mm²
- ► Anzugsdrehmoment: 0,22 bis 0,25 Nm

Verwandte Themen

X16/17 - Digitale Eingänge, Seite 133

Motortemperaturfühler, Seite 146

8.9 X17 – Motorfeedback

Für alle ersten Messsysteme

Dieser Anschluss ist bei SD2S Light (036212xxx, 0362x43xx) nicht vorhanden.

Verfügbare Messsysteme: Resolver (nicht implementiert in 0362140DCA und 0362x41ECA), Sinus-Cosinus-Geber, Inkrementalgeber TTL (5,3 V), Inkrementalgeber 12 V, Hall-Geber (5,3 V oder 12 V), linearer Hall-Geber, Feldplattengeber, Heidenhain EnDat-Geber, Hiperface-Geber, Encoder, RENISHAW BiSS C Interface

Ein NAMUR-Sensor wird an Stecker X15/Pin 6 angeschlossen.

⁽²⁾ Um diesen analogen Eingang zu nutzen, muss in der Software *drivemaster2* für "Analog-In 0 " der Parameter "Single-ended" aktiviert sein. Dies gilt ab den folgenden Geräteversionen:

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie vor dem Anschließen, ob das richtige Messsystem in der Software parametriert wurde.

25-poliger D-Sub-Stecker

Pin	E/A	Name	Bedeutung					
1	Е	S2	Resolver-S2					
2	Е	S1	Resolver-S1					
3	Α	R3	Resolver-R3					
4	Α	R1	Resolver-R1					
5	Е	S4	Resolver-S4					
6	Е	S3	Resolver-S3					
7	Е	COS-	SinCos/linearer Hall Cosinus-					
8	Е	COS+	SinCos/linearer Hall Cosinus+					
9	Е	SIN-	SinCos/linearer Hall Sinus-					
10	Е	SIN+	SinCos/linearer Hall Sinus+					
11	E	HALL_C / IN4 ⁽¹⁾	Hallsensor 12 V Spur C / digitaler 5 V-Eingang 4					
12	E	HALL_B / IN3 ⁽¹⁾	Hallsensor 12 V Spur B / digitaler 5 V-Eingang 3					
13	Е	HALL_A / IN2 ⁽¹⁾	Hallsensor 12 V Spur A / digitaler 5 V-Eingang 2					
14	E/A	GND	Masse					
15	E/A	GND	Masse					
16	Е	TEMP	Motortemperatur (gegen GND zu beschalten)					
17	Е	FP_IN	Feldplattensensor					
18	E/A	UB-/DATA-/SLO-	Encoder-B- / Hallsensor 5 V Differenz \overline{B} / BiSS C Slave-					
19	E/A	UB+/DATA+/SLO+	Encoder-B+ / Hallsensor 5 V Differenz B / BiSS C Slave+					
20	E/A	UA-/CIk-/MA-	Encoder-A- / Hallsensor 5 V Differenz A / BiSS C Master-					
21	E/A	UA+/Clk+/MA+	Encoder-A+ / Hallsensor 5 V Differenz A / BiSS C Master+					
22	E	UN-	Encoder-ZP- / SinCos-Geber-Nullimpuls- / Hall-sensor 5 V Differenz C					
23	E	UN+	Encoder-ZP+ / SinCos-Geber-Nullimpuls+ / Hall- sensor 5 V Differenz C					
24	Α	VCC_FB	Messsystemversorgung 5,3 V / 12 V (max. 4 W) ⁽²⁾					
25	Е	ERR / PULSE IN ⁽³⁾	Messsystemfehler					

⁽¹⁾ Bei den folgenden Geräten können die physikalischen Eingänge HALL A bis C ebenfalls als parametrierbare, digitale 5 V-Eingänge IN2 bis IN4 genutzt werden:

Schraubbolzen Flansch: max. Anzugsdrehmoment = 0,7 Nm

Verwandte Themen

X17 - Motorfeedback, Seite 134

X16/17 - Digitale Eingänge, Seite 133

^{► 0362}x40xx, 0362x41xx: ab Geräteversion 4.030

^{▶ 0362}x42xx: ab Geräteversion 4.130

⁽²⁾ Die Spannungen, auf die softwaretechnisch umgeschaltet wird, finden Sie bei den entsprechenden Anschlussbeispielen.

⁽³⁾ PULSE IN 5 V wird unterstützt ab: Firmware F04004v03011/fpga, Logik L04002v03021, *drivemaster2*-Version 1.8 Build 111

8.10 X18 – Analog-Schnittstelle

Die Funktionen der analogen Ein- und Ausgänge können je nach Antriebsfunktion variabel definiert werden. Die gewünschte Funktion stellen Sie in der Software *drivemaster2* ein.

9-poliger D-Sub-Stecker

X18	Pin	E/A	Name	Parametrierbare Funktionen		
				SERVO / VECTOR (SVC)	HSPWM, HSBLOCK / FPAM, HSPAM / UF	
	1	Е	AIN1-	Bezugspunkt für AIN1+ (Pin 2)		
	2	Е	AIN1+	► Keine Funktion	► Keine Funktion	
20000000000000000000000000000000000000	3	E	AIN0+ ⁽¹⁾	 ▶ Geschwindigkeitssollwert ▶ Stromsollwert ▶ Strombegrenzung ▶ W24 – Warnungsschwelle ,Strom¹ 	 Geschwindigkeitssollwert Strombegrenzung W24 – Warnungsschwelle ,Strom' 	
	4	E/A	GND	Masse		
	5		n.c.			
	6	A	AOUT1	 Keine Funktion Zielgeschwindigkeit Geschwindigkeitssollwert Geschwindigkeitsistwert Geschwindigkeitsistwert Geschwindigkeitsfehler Sollstrom Iststrom Motortemperatur Temperatur Leistungsendstufe Motorauslastung Auslastung Leistungsendstufe Busspannung Wirkleistung Zwischenkreisstrom Idc 	 Keine Funktion Zielgeschwindigkeit Geschwindigkeitssollwert Geschwindigkeitsistwert Geschwindigkeitsfehler Sollstrom Iststrom Motortemperatur Temperatur Leistungsendstufe Motorauslastung Auslastung Leistungsendstufe Busspannung Wirkleistung Zwischenkreisstrom Idc 	
	7	Е	AIN0-	Bezugspunkt für AIN0+ (Pin 3)		
	8	A	AOUT0	 ▶ Keine Funktion ▶ Zielgeschwindigkeit ▶ Geschwindigkeitssollwert ▶ Geschwindigkeitsistwert ▶ Geschwindigkeitsistwert ▶ Geschwindigkeitsfehler ▶ Sollstrom ▶ Iststrom ▶ Motortemperatur ▶ Temperatur Leistungsendstufe ▶ Motorauslastung ▶ Auslastung Leistungsendstufe ▶ Busspannung ▶ Wirkleistung ▶ Zwischenkreisstrom Idc 	 ▶ Keine Funktion ▶ Zielgeschwindigkeit ▶ Geschwindigkeitssollwert ▶ Geschwindigkeitsistwert ▶ Geschwindigkeitsfehler ▶ Sollstrom ▶ Iststrom ▶ Motortemperatur ▶ Temperatur Leistungsendstufe ▶ Motorauslastung ▶ Auslastung Leistungsendstufe ▶ Busspannung ▶ Wirkleistung ▶ Zwischenkreisstrom Idc 	
	9	Α	VCC_10	10 V Versorgungsspannung		

⁽¹⁾ Bei den folgenden Geräten steht der analoge Eingang AIN0+ (mit Massebezug) auch an Stecker X16/ Pin 10 zur Verfügung:

- ► 0362x40xx/0362120xx, 0362x41xx/0362121xx: ab Geräteversion 4.030
- ► 0362140DCA, 0362x41ECA
- ► 0362x42xx, 0362x43xx: ab Geräteversion 4.130

Schraubbolzen Flansch: max. Anzugsdrehmoment = 0,7 Nm

Verwandte Themen

X18 – Analoge Ein-/Ausgänge, Seite 147

8.11 X19 – COM1/Bedienteil

9-poliger D-Sub-Stecker

X19	Pin	E/A	Name	Bedeutung	
	1	A	VCC	5,3 V (Versorgung für optionales Bedienteil, kurzschlussfest)	
67	2	Е	RX	RS232-Schnittstelle 1	
	3	Α	TX	RS232-Schnittstelle 1	
9 6	4	E/A	CAN_L ⁽¹⁾	CAN_L	
	5	E/A	GND	Masse	
	6	Е	RX2	RS232-Schnittstelle 2	
	7	Α	TX2	RS232-Schnittstelle 2	
	8	E/A	CAN_H ⁽¹⁾	CAN_H	
	9	E/A	GND	Masse	

⁽¹⁾ Bei SD2S Light ist die CAN-Schnittstelle ab den folgenden Geräteversionen vorhanden:

- ► 0362120xx: ab Geräteversion 4.002
- 0362121xx: ab Geräteversion 4.003
- 0362x43xx: ab Geräteversion 4.103

Hinweis

CAN-Bus: Da es sich hier um einen Multiport-Anschluss handelt, entspricht die Pinbelegung für den CAN-Bus nicht der CiA-Norm und muss entsprechend angepasst werden.

Schraubbolzen Flansch: max. Anzugsdrehmoment = 0,7 Nm

Verwandte Themen

X19 - Busanbindung, Seite 148

8.12 X22A – Motoranschluss

Gerätevarianten: 0362x40EF, 0362x41xx(A) bis 0362x43xx, 0362121xx

4-poliger Power-Combicon Stecker, passend für Gegenstecker PC 4/ 4-ST-7,62 (Phoenix)

Gegenstecker X22A	Name	Codierung	Bedeutung
	U	-	Motorphase U
	V	-	Motorphase V
	W	codiert	Motorphase W
	PE	-	Schutzleiter

Angaben zu den Klemmanschlüssen:

- Leiterquerschnitt starr/flexibel:
 - 0362x40EF, 0362x42/43xx: 1,5 bis 4 mm²
 - 0362121xF / 0362x41xF (480 V): 2,5 bis 4 mm²
 - 0362121xC / 0362x41xC(A) (230 V): 4 mm²
- Anzugsdrehmoment: 0,5 bis 0,6 Nm

Hinweis

Nur 0362x40EF: Bei Verwendung einer abgeschirmten Motorleitung länger als 5 m ist eine zusätzliche Entstörung der Leitung erforderlich: Die Motorleitung kann zum Beispiel mit 11 Windungen durch einen Ringkern gefiltert werden (Ringkern: R 63/38/25, Al = 15150 nH; Artikel-Nr. 13163110). Die maximal zulässige Länge einer abgeschirmten Motorleitung beträgt 25 m.

Verwandte Themen

X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen, Seite 150

Schirmung des Motorkabels, Seite 151

Motorkabel, Seite 166

8.13 X26/ X27 – SERVOLINK 4

SERVOLINK 4: optischer Eingang (X26) und optischer Ausgang (X27)

Die Lichtwellenleiteranschlüsse (LWL) für den SERVOLINK 4 befinden sich unten am Gerät.

Anschlu	SIEB & MEYER-Artikelnummer	
		12540102
	Eingänge (schwarz)	12540103
		12540202
	Ausgänge (grau oder weiß)	12540203
	Steckverbinder am Ka- bel (TOSLINK F05)	32022900

ACHTUNG

Gefahr von Kabelschäden

Wenn Sie das Lichtleiterkabel mit dem Steckverbinder zu ruckartig aus dem LWL-Anschluss herausziehen, kann das Kabel beschädigt werden.

→ Halten Sie beim Herausziehen des Kabels aus dem Steckverbinder diesen fest und ziehen Sie das Kabel vorsichtig heraus.

Verwandte Themen

X26/X27 - SERVOLINK, Seite 152

Anschlussprinzip, Seite 188

8.13.1 Konfektionierung von Lichtleiterkabeln mit Steckverbinder

Für jeden LWL-Anschluss ist ein Lichtleiterkabel mit einem Steckverbinder erforderlich. Folgende Angaben gelten für Steckverbinder, die in Anwendungen mit 1 mm Standard Kunststoff-Lichtleiter (LWL-, POF-Kabel) eingesetzt werden.

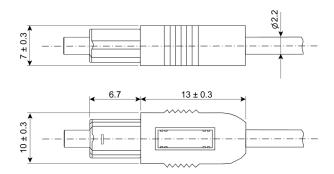
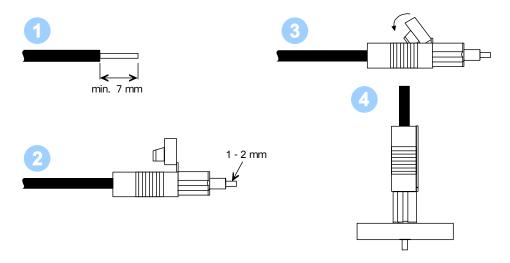



Abb. 63: Abmessungen des LWL-Steckverbinders in mm

Technische Daten		Nennwert
Lagertemperatur	-40 bis 70 °C	
Betriebstemperatur	-20 bis 70 °C	
Zugspannung	zwischen LWL-Kabel und Steckverbinder	19,6 N
	LWL-Kabel	49 N
Biegeradius Achten Sie beim Verbieg Biegeradius 6 bis 10 ma	min. 25 mm	

Vorgehensweise

- Entfernen Sie den Kunststoffmantel des LWL-Kabels (Durchmesser 2,2 mm) auf mindestens 7 mm (siehe Abbildung, [1]). Achten Sie darauf, dass das abgemantelte Ende des LWL-Kabels nicht verschmutzt wird. Reinigen Sie es ggf. mit einem trockenen Papiertuch.
- 2. Stecken Sie das abgemantelte LWL-Kabel vorsichtig gemäß der Abbildung in den Steckverbinder. Die 1 mm Polymerfaser sollte dabei ca. 1 2 mm aus dem Steckverbinder herausragen (siehe Abbildung, [2]).
- 3. Verpressen Sie den Steckverbinder. Dadurch wird die Polymerfaser im Steckverbinder gehalten. Die Verriegelung muss hörbar einrasten (siehe Abbildung, [3]).
- 4. Stecken Sie den Steckverbinder mit dem LWL-Kabel in die Polierscheibe und schleifen Sie das überstehende Faserende mittels Polierbogen auf einer glatten Unterlage (z.B. Glasscheibe) ab (siehe Abbildung, [4]). Eventuelle Schleifrückstände müssen entfernt werden.

Folgende Materialien können Sie bei SIEB & MEYER bestellen:

Artikel	SIEB & MEYER Artikelnummer		
Polierscheibe für Lichtleiterkabel	47000001		
Abisolierzange für Lichtleiterkabel	47000002		
Schleifpapier	47000003		

8.14 X28 - Einspeisung

Gerätevarianten:

0362x	21xC	21xF	40EF	41xC(A)	41xF	42EC	43EC
1-phasige Einspeisung	✓	-	_	✓	-	✓	✓
3-phasige Einspeisung	✓	✓	1	✓	✓	✓	✓

4-poliger Power-Combicon-Stecker, passend für Gegenstecker PC 4/ 4-ST-7,62 (Phoenix)

Gegenstecker X28	Pin	Codierung	1-phasige Einspeisung		3-phasige Einspeisung		
			Na- me	Bedeutung	Na- me	Bedeutung	
	1	codiert	L	Haupteinspeisung	L1	Haupteinspeisung	
	2	_	N	Neutralleiter	L2	Haupteinspeisung	
<u> </u>	3	_	-	n.c.	L3	Haupteinspeisung	
	4	_	PE	Schutzleiter	PE	Schutzleiter	

ACHTUNG

3-phasige Einspeisung bei den Geräten 0362121xC / 0362x41xC(A) / 0362x42xx / 0362x43xx

Die Geräte dürfen maximal mit $3 \times 230 \text{ V}_{AC}$ betrieben werden. Bei höherer Einspeisung werden die Geräte zerstört.

→ Verwenden Sie einen passenden Netztransformator für die 3-phasige Einspeisung der Geräte 0362x42xx / 0362x43xx / 0362121xC / 0362x41xC(A) (siehe Anschlussbeispiele Seite 153).

Angaben zu den Klemmanschlüssen:

- Leiterquerschnitt starr/flexibel:
 - 0362x40EF, 0362x42/43xx (3-phasige Einspeisung): 1,5 bis 4 mm²
 - 0362121xF / 0362x41xF (480 V): 2,5 bis 4 mm²
 - 0362121xC / 0362x41xC(A) (230 V): 4 mm²
 - 0362x42/43xx (1-phasige Einspeisung): 4 mm²
- ► Anzugsdrehmoment: 0,5 bis 0,6 Nm

Hinweis

Beachten Sie, dass der zu verwendende Leiterquerschnitt von der Gesamtauslastung Ihres Netzteils abhängt.

8.15 X40 – Einspeisung

Gerätevarianten: 0362120xx, 0362x40xx(A), 0362242DC

3-poliger Combicon Stecker, passend für Gegenstecker MSTB 2,5/ 3-ST-5,08 (Phoenix)

0362120xC / 0362x40xC(A) / 0362242DC		0362120xA / 0362x40xA		Name	Bedeutung		
Gegenstecker X40	Pin	Codierung	Gegenstecker X40	Pin	Codierung		
	1	codiert		1	-	L1	Phase
z	2	-	Z	2	-	N	N-Leiter
	3	-		3	-	PE	Erde

Angaben zu den Klemmanschlüssen

- Leiterquerschnitt starr/flexibel: 1 bis 2,5 mm²
- ► Anzugsdrehmoment: 0,5 bis 0,6 Nm

Hinweis

Beachten Sie, dass der zu verwendende Leiterquerschnitt von der Gesamtauslastung Ihres Netzteils abhängt.

8.16 X41 – Externer Ballastwiderstand

A GEFAHR

Hohe Spannungen im Zwischenkreis

Auch nach dem Abschalten des Geräts können im Zwischenkreis des gesamten Systems hohe Spannungen anliegen, die zu schweren Verletzungen führen können.

- → Beachten Sie. dass die Verbindungen zum externen Ballastwiderstand erst vom Gerät getrennt werden dürfen, wenn der Zwischenkreis vollständig entladen ist ("Kondensatorentladung").
- → Bevor Sie Arbeiten am Gerät bzw. am Zwischenkreis vornehmen, führen Sie folgende Schritte aus:
- → Trennen Sie das Gerät sicher von der Netzversorgung.
- → Warten Sie die Entladezeit der Zwischenkreiskapazitäten ab. Diese beträgt länger als 4 Minuten.
- → Stellen Sie durch Nachmessen sicher, dass der Zwischenkreis vollständig entladen ist.
- → Trennen Sie die Verbindungen des externen Ballastwiderstandes vom Gerät.
- → Beachten Sie auch die allgemeinen Sicherheitshinweise, bevor Sie weitere Arbeiten am System durchführen.

3-poliger Combicon Stecker, passend für Gegenstecker FKIC 2,5/ 3-ST-5,08 (Phoenix)

Gegenstecker X41	Pin	Name	Bedeutung
1 2	1	Rextern	externer Ballastwiderstand / Chopper-Anschluss
33	2	Rintern	interner Ballastwiderstand
	3	UB+	positiver Zwischenkreisanschluss 4

Angaben zu den Klemmanschlüssen

Leiterquerschnitt starr/flexibel: 1 bis 2,5 mm²

Anschlussart: Federkraftanschluss (Bedienung: siehe <u>Seite 101</u>)

Hinweis

Ein externer Ballastwiderstand wird an Pin 1 und Pin 3 angeschlossen. Wenn der interne Ballastwiderstand benutzt werden soll, müssen Pin 1 und Pin 2 im Stecker X41 berührungsgeschützt gebrückt werden.

Verwandte Themen

X41/X63 – Externer Ballastwiderstand, Seite 154

Anschlussprinzip, Seite 188

8.17 X42 – Motoranschluss

Gerätevarianten: 0362120xx, 0362x40xx(A), 0362242DC

4-poliger Combicon Stecker, passend für Gegenstecker IC 2,5/ 4-ST-5,08 (Phoenix)

Gegenstecker X42	Pin	Name	Bedeutung
	1	U	Motorphase U
	2	V	Motorphase V
	3	W	Motorphase W
	4	PE	Schutzleiter
A.			

Angaben zu den Klemmanschlüssen

Leiterguerschnitt starr/flexibel: 1 bis 2,5 mm²

Anzugsdrehmoment: 0,5 bis 0,6 Nm

Hinweis

Bei Verwendung einer abgeschirmten Motorleitung länger als 5 m ist eine zusätzliche Entstörung der Leitung erforderlich: Die Motorleitung kann zum Beispiel mit 11 Windungen durch einen Ringkern gefiltert werden (Ringkern: R 63/38/25, Al = 15150 nH; Artikel-Nr. 13163110). Die maximal zulässige Länge einer abgeschirmten Motorleitung beträgt 25 m.

Verwandte Themen

X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen, Seite 150

Schirmung des Motorkabels, Seite 151

Motorkabel, Seite 166

8.18 X43 – 24 V / Safety (STO)

24 V-Logikversorgung; Sicherheitsschaltung und Anlaufsperre (STO)

6-poliger Mini-Combicon Stecker, passend für Gegenstecker MSTB 2,5/ 6-STF-5,08 (Phoenix)

Gegenstecker X43	Pin	E/A	Name	Bedeutung
	1	E	SAFEA / OSSD1	Freigabe der Sicherheitsschaltung ► Dauerlast bei 24 V > 160 mA/24 V, abhängig von der Geräteleistung ► Einschaltspitzenstrom pro Gerät kann 8 A/24 V in den ersten 2 ms übersteigen.
	2	E/A	GND	Bezugspotential
6	3	Е	SAFEB / OSSD2	Freigabe der Sicherheitsschaltung ► Dauerlast ca. 15 mA/24 V ► Einschaltspitzenstrom ist im Normalfall vernachlässigbar.
	4	E/A	GND	Bezugspotential
	5	А	24 V in- tern ⁽¹⁾	Logikversorgung 18 bis 28 V (ungeregelt)
	6	E	24 V Logic Input	Logikeinspeisung 24 V ⁽²⁾

⁽¹⁾ Der 24-V-Ausgang ist nicht zur Versorgung von externen Sicherheitsschaltungen geeignet, da die Normen hierfür eine externe Versorgung verlangen. Wird die Sicherheitsfunktion (STO) nicht benötigt, dient diese Spannung ausschließlich zum Brücken der Pins 1 und 3.

Angaben zu den Klemmanschlüssen

- Leiterquerschnitt starr/flexibel: 0,14 bis 1,5 mm²
- Anzugsdrehmoment: 0,22 bis 0,25 Nm

Hinweis

Das Leistungsteil ist nur aktiv, wenn SAFEA und SAFEB angeschlossen sind. Wird die Sicherheitsfunktion (STO) nicht benötigt, müssen Pin 1 und Pin 3 zu Pin 5 gebrückt werden.

Verwandte Themen

X10/ X43 - Sicherheitsschaltung (STO), Seite 129

Sicherheitsschaltung / Anlaufsperre (STO), Seite 173

Verdrahtungsbeispiel 0362144xx bis 0362x48xx, Seite 192

8.19 X44 – Einspeisung

Gerätevariante: 0362x45xx

4-poliger Power-CombiCon Stecker, passend für Gegenstecker PC 5/ 4-STCL-7,62 (Phoenix) mit Click & Lock-Verriegelung (siehe <u>STCL (S. 101)</u>)

Gegenstecker X44	Pin	Codierung	Name	Bedeutung
	1	codiert	L1	Haupteinspeisung
	2	-	L2	Haupteinspeisung
	3	-	L3	Haupteinspeisung
	4	-	PE	Schutzleiter

 $^{^{(2)}}$ Bei den Geräten 0362x45xx bis 0362x48xx muss die Logikversorgung grundsätzlich über Stecker X43 / Pin 6 eingespeist werden.

Angaben zu den Klemmanschlüssen:

Leiterquerschnitt starr: 6 bis 10 mm²
 Leiterquerschnitt flexibel: 6 mm²
 Anzugsdrehmoment: 0,7 bis 0,8 Nm

Hinweis

Beachten Sie, dass der zu verwendende Leiterquerschnitt von der Gesamtauslastung Ihres Netzteils abhängt.

8.20 X45 – Motoranschluss

Gerätevariante: 0362x45xx

4-poliger Power-Combicon Stecker, passend für Gegenstecker PC 5/ 4-STCL-7,62 (Phoenix) mit Click & Lock-Verriegelung (siehe STCL (S. 101))

Gegenstecker X45	Name	Codierung	Bedeutung
	U	-	Motorphase U
	V	-	Motorphase V
× ×	W	codiert	Motorphase W
	PE	-	Schutzleiter

Angaben zu den Klemmanschlüssen:

Leiterquerschnitt starr: 4 bis 10 mm²
 Leiterquerschnitt flexibel: 4 bis 6 mm²
 Anzugsdrehmoment: 0,7 bis 0,8 Nm

Verwandte Themen

X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen, Seite 150

Schirmung des Motorkabels, Seite 151

Motorkabel, Seite 166

8.21 X46 – Einspeisung

Gerätevariante: 0362144xx, 0362x46xx

4-poliger Power-Combicon Stecker, passend für Gegenstecker PC 16/ 4-STF-10,16 (Phoenix)

Gegenstecker X46	Pin	Codierung	Name	Bedeutung
	1	codiert	L1	Haupteinspeisung
	2	-	L2	Haupteinspeisung
	3	-	L3	Haupteinspeisung
	4	-	PE	Schutzleiter

Angaben zu den Klemmanschlüssen:

Leiterquerschnitt starr/flexibel:

0362144xx: 6 bis 16 mm²
0362x46IF: 10 bis 16 mm²
0362x46LF: 16 mm²

► Anzugsdrehmoment: 1,7 bis 1,8 Nm

Hinweis

Beachten Sie, dass der zu verwendende Leiterquerschnitt von der Gesamtauslastung Ihres Netzteils abhängt.

8.22 X47 – Motoranschluss

Gerätevarianten: 0362144xx, 0362x46xx

4-poliger Power-Combicon Stecker, passend für Gegenstecker IPC 16/ 4-STF-10,16 (Phoenix)

Gegenstecker X47	Name	Codierung	Bedeutung
	U	-	Motorphase U
	V	-	Motorphase V
	W	codiert	Motorphase W
	PE	-	Schutzleiter

Angaben zu den Klemmanschlüssen:

Leiterquerschnitt starr/flexibel:

0362144xx: 4 bis 16 mm²
0362x46IF: 10 bis 16 mm²
0362x46LF: 16 mm²

► Anzugsdrehmoment: 1,7 bis 1,8 Nm

Verwandte Themen

X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen, Seite 150

Schirmung des Motorkabels, Seite 151

Motorkabel, Seite 166

8.23 X48 – Einspeisung

Gerätevariante: 0362x48xx

4-poliger Power-Combicon Stecker, passend für Gegenstecker PC 35/ 4-STF-15,00 (Phoenix)

Gegenstecker X48	Pin	Codierung	Name	Bedeutung
	1	codiert	L1	Haupteinspeisung
	2	-	L2	Haupteinspeisung
	3	-	L3	Haupteinspeisung
3	4	-	PE	Schutzleiter
05				

Angaben zu den Klemmanschlüssen:

Leiterquerschnitt starr/flexibel: 35 mm²

► Anzugsdrehmoment: 2,5 bis 4,5 Nm

Hinweis

Beachten Sie, dass der zu verwendende Leiterquerschnitt von der Gesamtauslastung Ihres Netzteils abhängt.

8.24 X49 – Motoranschluss

Gerätevariante: 0362x48xx

4-poliger Power-Combicon Stecker, passend für Gegenstecker PC 35/ 4-STF-15,00 (Phoenix)

Gegenstecker X49	Name	Codierung	Bedeutung
	U	-	Motorphase U
	V	-	Motorphase V
< .	W	codiert	Motorphase W
	PE	-	Schutzleiter

Angaben zu den Klemmanschlüssen:

Leiterquerschnitt starr/flexibel: 35 mm²

Anzugsdrehmoment: 2,5 bis 4,5 Nm

Verwandte Themen

X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen, Seite 150

Schirmung des Motorkabels, Seite 151

Motorkabel, Seite 166

8.25 **X55 – Fehlerbus**

24 V-Eingänge zur Auswertung der Statusmeldungen des Leistungsnetzteils

4-poliger Power-CombiCon Stecker, passend für Gegenstecker MSTB 2,5/ 4-ST-5,08 (Phoenix)

Gegenstecker X55	Pin	E/A	Name	Bedeutung
12	1	Α	24 V	24 V-Ausgang für Fehlererzeugung des Netzteils (max. 0,5 A)
3	2	E/A	GND	Masse
	3	Е	PERR0	Fehlercode 0 Leistungsnetzteil
The state of the s	4	E	PERR1	Fehlercode 1 Leistungsnetzteil

Angaben zu den Klemmanschlüssen

Leiterquerschnitt starr/flexibel: 0,2 bis 2,5 mm²

Anzugsdrehmoment: 0,5 bis 0,6 Nm

Verwandte Themen

X55 - Fehlerbus, Seite 154

8.26 X56 – Zwischenkreis

Gerätevariante: 0362147xx

Verbinden Sie das Gerät über die Erdungsschraube am Geräteboden mit dem Erdanschluss.

2 Durchführungsklemmen, Typ HDFK 16 A oder UW 25/S (Phoenix)

Name	Bedeutung
UB+	Zwischenkreis +
UB-	Zwischenkreis -

Angaben zu den Klemmanschlüssen

Durchführungsklemme HDFK 16 A

Leiterquerschnitt starr: 25 mm²
 Leiterquerschnitt flexibel: 16 mm²
 Anzugsdrehmoment: 2 bis 2,3 Nm

Durchführungsklemme UW 25/S

Leiterquerschnitt starr: 35 mm²
 Leiterquerschnitt flexibel: 25 mm²
 Anzugsdrehmoment: 4 bis 4,5 Nm

8.27 X57 – Motoranschluss

Gerätevariante: 0362147xx

Verbinden Sie das Gerät über die Erdungsschraube am Geräteboden mit dem Erdanschluss.

3 Durchführungsklemmen, Typ HDFK 16 A oder UW 25/S (Phoenix)

Name	Bedeutung	
U	Motorphase U	
V	Motorphase V	

Name	Bedeutung	
W	Motorphase W	

Angaben zu den Klemmanschlüssen

Durchführungsklemme HDFK 16 A

Leiterquerschnitt starr: 25 mm²

Leiterquerschnitt flexibel: 16 mm²

Anzugsdrehmoment: 2 bis 2,3 Nm

Durchführungsklemme UW 25/S

Leiterquerschnitt starr: 35 mm²

Leiterquerschnitt flexibel: 25 mm²

Anzugsdrehmoment: 4 bis 4,5 Nm

Verwandte Themen

X22A/ X42/ X45/ X47/ X49/ X57 - Motorphasen, Seite 150

Schirmung des Motorkabels, Seite 151

Motorkabel, Seite 166

8.28 X63 – Externer Ballastwiderstand

A GEFAHR

Hohe Spannungen im Zwischenkreis

Auch nach dem Abschalten des Geräts können im Zwischenkreis des gesamten Systems hohe Spannungen anliegen, die zu schweren Verletzungen führen können.

- → Beachten Sie. dass die Verbindungen zum externen Ballastwiderstand erst vom Gerät getrennt werden dürfen, wenn der Zwischenkreis vollständig entladen ist ("Kondensatorentladung").
- → **Bevor** Sie Arbeiten am Gerät bzw. am Zwischenkreis vornehmen, führen Sie folgende Schritte aus:
- → Trennen Sie das Gerät sicher von der Netzversorgung.
- → Warten Sie die Entladezeit der Zwischenkreiskapazitäten ab. Diese beträgt länger als 4 Minuten.
- → Stellen Sie durch Nachmessen sicher, dass der Zwischenkreis vollständig entladen ist.
- → Trennen Sie die Verbindungen des externen Ballastwiderstandes vom Gerät.
- → Beachten Sie auch die allgemeinen Sicherheitshinweise, bevor Sie weitere Arbeiten am System durchführen.

SPC5-Stecker (Phoenix)

Gerätevarianten: 0362144xx, 0362145IF vor Facelift (Geräteversion < 4.200)

3-poliger Power-Combicon Stecker, passend für Gegenstecker SPC 5/ 3-STCL-7,62 (Phoenix) mit Click & Lock-Verriegelung (siehe <u>STCL (S. 101)</u>)

Gegenstecker X63	Pin	Name	Bedeutung
	1	Rextern	externer Ballastwiderstand / Chopper-Anschluss
	2	Rintern	interner Ballastwiderstand
2 3	3	UB+	positiver Zwischenkreisanschluss 4

Angaben zu den Klemmanschlüssen:

- ► Leiterquerschnitt starr: 2 bis 10 mm²
- Leiterquerschnitt flexibel: 2 bis 6 mm²
- ► Anschlussart: Federkraftanschluss mit Push-in-Technik (Bedienung: siehe Seite 102)

Hinweis

Ein externer Ballastwiderstand wird an Pin 1 und Pin 3 angeschlossen. Wenn der interne Ballastwiderstand benutzt werden soll, müssen Pin 1 und Pin 2 im Stecker X63 berührungsgeschützt gebrückt werden.

Klemmenblock (WAGO)

Gerätevarianten: 0362x45xx/ 46xx/ 48MF (ab Geräteversion 4.200), 0362x48OF (ab Geräteversion 4.202)

3-poliger Klemmenblock mit Durchführungsklemmen, Rastermaß 7 mm (WAGO)

X63	Pin	Name	Bedeutung
ாட்ட இறி	1	Rextern	externer Ballastwiderstand / Chopper-Anschluss
3 7	2	Rintern	interner Ballastwiderstand
1 00	3	UB+	positiver Zwischenkreisanschluss 4

Angaben zu den Klemmanschlüssen:

- Leiterquerschnitt starr/flexibel: 2 bis 4 mm²
- CAGE CLAMP-Anschlusstechnik (Schraubendreherbetätigung)

Hinweis

Ein externer Ballastwiderstand wird an Pin 1 und Pin 3 angeschlossen. Wenn der interne Ballastwiderstand benutzt werden soll, müssen Pin 1 und Pin 2 im Stecker X63 berührungsgeschützt gebrückt werden.

Verwandte Themen

X41/X63 - Externer Ballastwiderstand, Seite 154

Anschlussprinzip, Seite 188

8.29 X64/X65 - EtherCAT

EtherCAT-Slave-Schnittstellen X64 (Ausgang) und X65 (Eingang) zum Anschluss einer übergeordneten Steuerung

Hinweis

Die EtherCAT-Schnittstelle ist nur mit den folgenden Gerätevarianten erhältlich: 0362**2**4xxx.

2 × 8-polige RJ45-Buchse

X64/X65	Pin	E/A	Name	Beschreibung
	1	Α	TX+	Daten senden +
	2	Α	TX-	Daten senden -
	3	Е	RX+	Daten empfangen +
	4		n.c.	
	5		n.c.	
	6	E	RX-	Daten empfangen -
	7		n.c.	
	8		n.c.	

Verwandte Themen

X64/X65 - EtherCAT, Seite 155

LED-Statusanzeige: EtherCAT-Verbindung, Seite 156

9 Anschlussbeispiele

Die folgenden Abschnitte enthalten Anschlussbeispiele für die einzelnen Stecker des Geräts.

Verdrahtungsbeispiele für den Geräteanschluss finden Sie im Anhang (S. 188).

9.1 X6, X7 – Inkrementalgeber mit TTL-Signalen

Der Anschluss ist nach Schnittstellennorm EIA-422 ausgeführt.

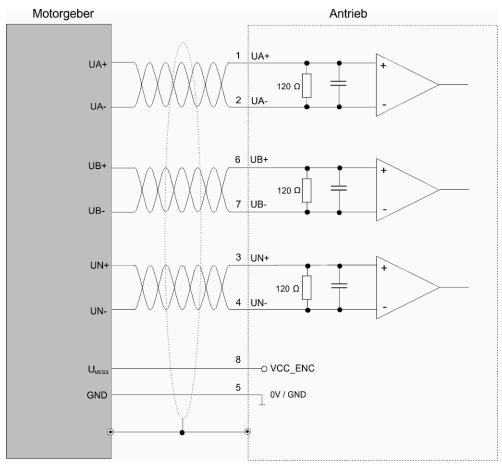


Abb. 64: Inkrementalgeber mit TTL-Signalen

Gebersignale: 5 V

9.2 X7 – Geberemulation

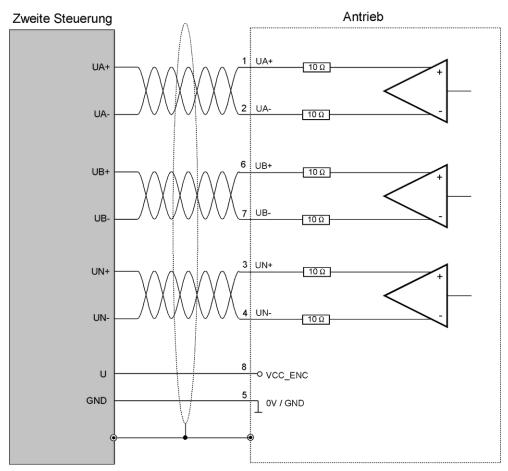


Abb. 65: Geberemulation

Die Übertragung entspricht der Norm TIA/EIA-422-B mit einer Differenzspannung von mind. ±0,9 V.

9.3 X10/ X43 – Sicherheitsschaltung (STO)

Die Sicherheitsschaltung ist bei älteren Geräten der Variante 0362140xx nicht integriert.

Hinweis

Siehe auch Kapitel 13 "Sicherheitsschaltung / Anlaufsperre (STO)", Seite 173.

9.3.1 Beschaltung mit OSSD

OSSD = Output Signal Switching Device

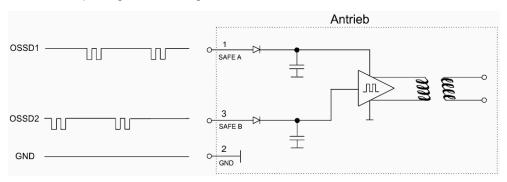


Abb. 66: Sicherheitsschaltung (STO) - Beschaltung mit OSSD

9.3.2 Beschaltung ohne OSSD

OSSD = Output Signal Switching Device



Abb. 67: Sicherheitsschaltung (STO) - Beschaltung ohne OSSD

9.4 X15 – Digitale Ausgänge / NAMUR-Sensor / PULSE IN / Digitale Feldplatte / GMR

9.4.1 Digitale Ausgänge

Die Bedeutungen der digitalen Ausgänge können parametriert werden. Jeder Ausgang kann mit 100 mA belastet werden.

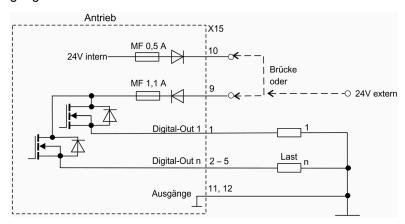


Abb. 68: Digitale Ausgänge

9.4.2 NAMUR-Sensor

Die Funktion NAMUR wird ab Geräteversion 3.201 unterstützt. Für die Gerätevariante 0362x41xx gilt dies ab Geräteversion 3.301.

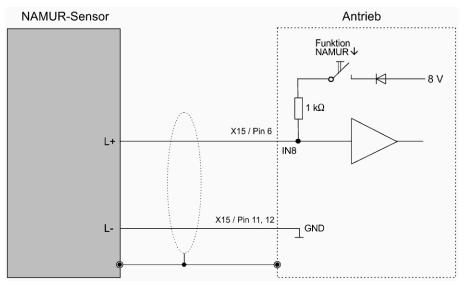


Abb. 69: NAMUR-Sensor

Hinweis

Entsprechend der NAMUR-Norm ist die Schaltschwelle für den Eingang 2,5 mA.

9.4.3 PULSE IN 24 V

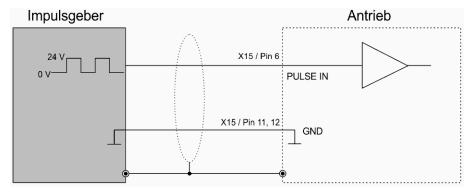


Abb. 70: PULSE IN 24 V

Hinweis

Ein Impulsgeber für 5 V wird an Stecker X17 (Pin 25) angeschlossen, siehe Anschlussbeispiel Kapitel 9.6.11 "PULSE IN 5 V", Seite 144.

9.4.4 Digitale Feldplatte / GMR

Die Schaltschwellen des Umrichtereingangs IN8 liegen bei 5,4 V für low-aktive Signale und 5,9 V für high-aktive Signale. Deshalb müssen die Schaltschwellen des verwendeten Sensors durch Verschieben der Mittenspannung entsprechend angepasst werden.

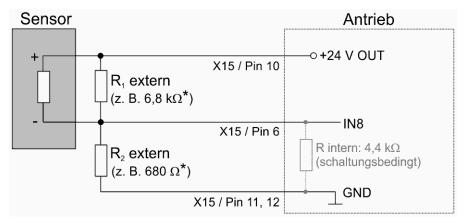


Abb. 71: Digitale Feldplatte / GMR

[*] Die Widerstände R₁ und R₂ sind abhängig vom verwendeten Sensor.

Beispielberechnung der Widerstände R₁ und R₂

Die Widerstände werden anhand der Spindeldaten errechnet.

Angaben aus dem Datenblatt des Spindelherstellers:

- ► Sensor aus: 4 mA (Signal ist nicht vorhanden)
- ► Sensor ein: 8 mA (Signal ist vorhanden)
- ► Spannung U: 3 V (Amplitude bei 24 V-Versorgung und einem Widerstand (R₂) von 680 Ω)

Der schaltungsbedingte Widerstand Rintern (4,4 kΩ) muss einberechnet werden.

Aus den Spindeldaten ergeben sich die folgenden Spannungspegel am Eingang:

Sensor aus:
$$I \times \frac{1}{(1/R_{yext} + 1/R_{int})} = 4 \text{ mA} \times \frac{1}{(1/680 \Omega + 1/4400 \Omega)} = 2,36 \text{ V}$$

Sensor an:
$$I \times \frac{1}{(\frac{1}{R_{,ext}} + \frac{1}{R_{int}})} = 8 \text{ mA} \times \frac{1}{(\frac{1}{680 \Omega} + \frac{1}{4400 \Omega})} = 4,71 \text{ V}$$

Mittenspannung des Sensors: (4,71 V + 2,36 V)/2 = 3,54 V

Mittenspannung des Eingangs IN8 am SD2S: (5,9 V + 5,4 V) / 2 = 5,65 V

Der Spannungspegel muss entsprechend der Differenz aus den Mittenspannungen durch eine Zusatzspannung an R₁ angehoben werden.

Zusatzspannung R_1 : 5,65 V - 3,54 V = 2,11 V

Widerstandswert R₁: $(24 \text{ V} / 2,11 \text{ V}) \times 588 \Omega = 6,688 \text{ k}\Omega \rightarrow 6,8 \text{ k}\Omega$

(588 Ω ergibt sich aus den Widerständen R₂extern und Rintern.)

Hinweis

Für die Verwendung von anderen Sensoren beachten Sie bitte die Eingangsschaltschwellen des Umrichters und das Datenblatt des Sensorherstellers.

9.4.5 PULSE (Drehzahlimpulse)

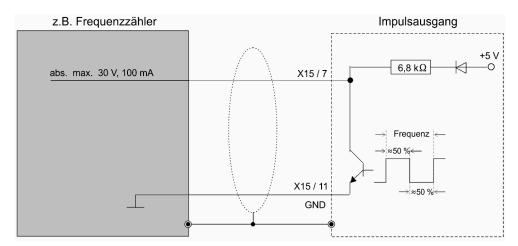


Abb. 72: PULSE - Drehzahlimpulse

9.5 X16/17 – Digitale Eingänge

Digitale Eingänge an X16

Die Bedeutungen der digitalen Eingänge können parametriert werden.

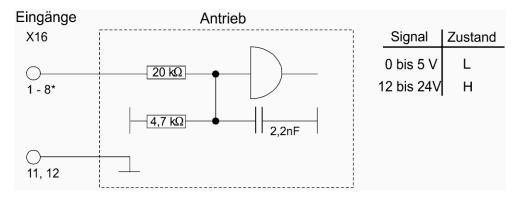


Abb. 73: Digitale Eingänge an X16

[*] Ein weiterer digitaler Eingang befindet sich am Anschluss X15 (Pin 6).

Digitale Eingänge (5 V) an X17

Die folgenden Abbildung ist eine Beispielverdrahtung für einen 5 V-Endschalter:

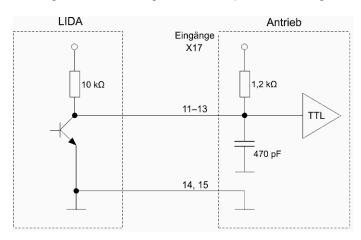


Abb. 74: Digitale Eingänge an X17

9.6 X17 – Motorfeedback

9.6.1 Resolver

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie vor dem Anschließen, ob das richtige Messsystem in der Software parametriert wurde.

Es ist eine abgeschirmte Leitung, 3-mal paarig verdrillt, zu verwenden. Drillmodus: Sinus/Sinus, Cosinus/Cosinus, Rotor/Rotor; Bezeichnung der Leitung, z. B. LIYCY $3 \times 2 \times 0,14$.

Wird der thermische Motorschutz ausgewertet, ist eine 4-mal paarig verdrillte, abgeschirmte Leitung zu verwenden.

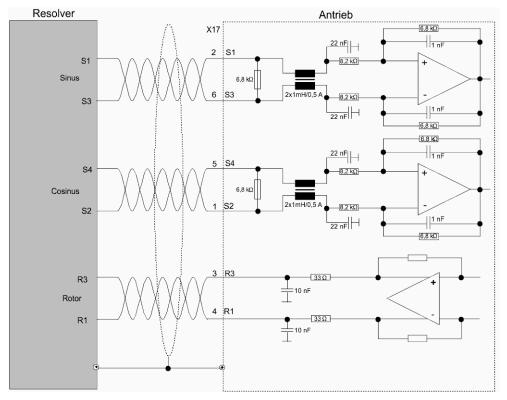


Abb. 75: Resolver

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

9.6.2 Inkrementalgeber mit sinusförmigen Signalen (1 V_{ss})

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

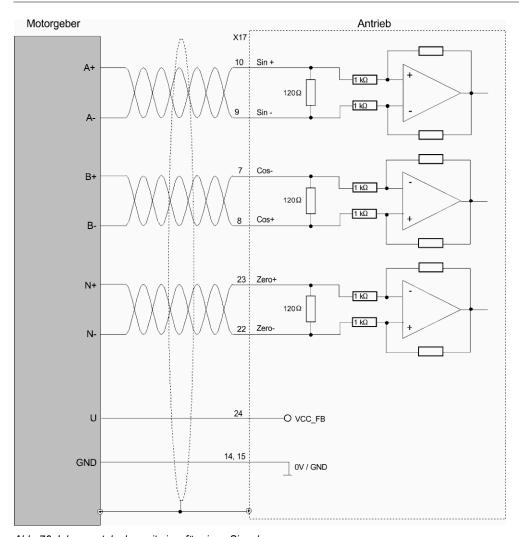


Abb. 76: Inkrementalgeber mit sinusförmigen Signalen

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

9.6.3 Linearer Hall-Geber (1 V ss)

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

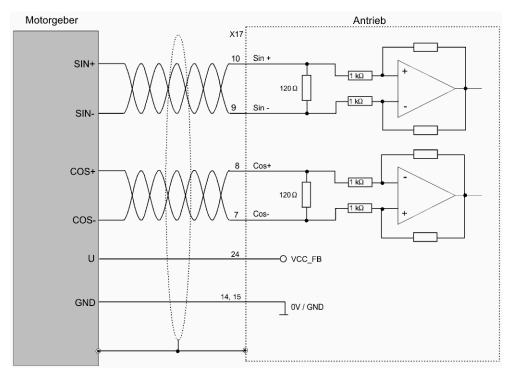


Abb. 77: Linearer Hall-Geber

VCC_FB wird beim Parametrieren dieses Messsystems auf 12 V geschaltet.

9.6.4 EnDat 2.1 mit sinusförmigen Signalen (1 V ss)

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

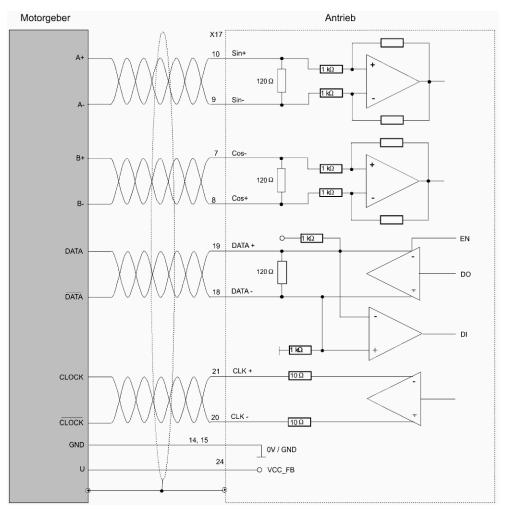


Abb. 78: EnDat 2.1 mit sinusförmigen Signalen

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

9.6.5 Hiperface mit sinusförmigen Signalen

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

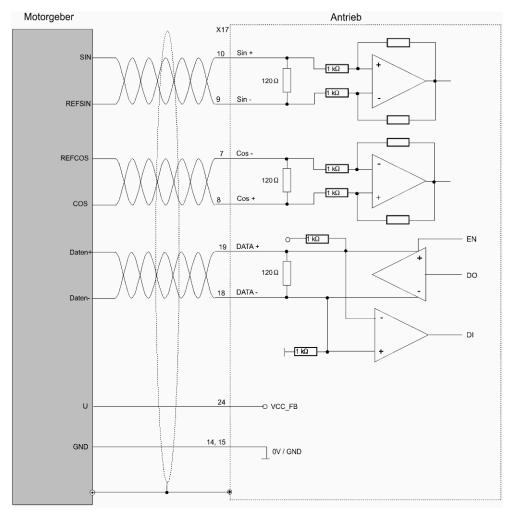


Abb. 79: Hiperface mit sinusförmigen Signalen

VCC_FB wird beim Parametrieren dieses Messsystems auf 12 V geschaltet.

9.6.6 Hall-Geber 12 V

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

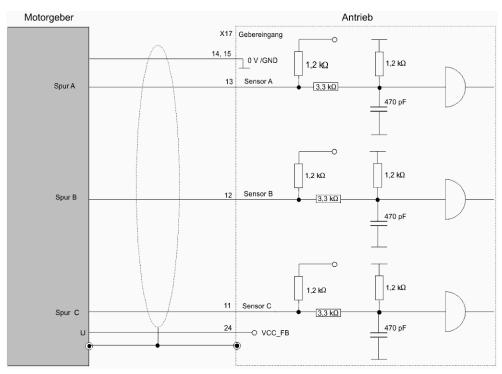


Abb. 80: Hall-Geber 12 V

VCC_FB wird beim Parametrieren dieses Messsystems auf 12 V geschaltet.

9.6.7 Hall-Geber 5,3 V

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie vor dem Anschließen, ob das richtige Messsystem in der Software parametriert wurde.

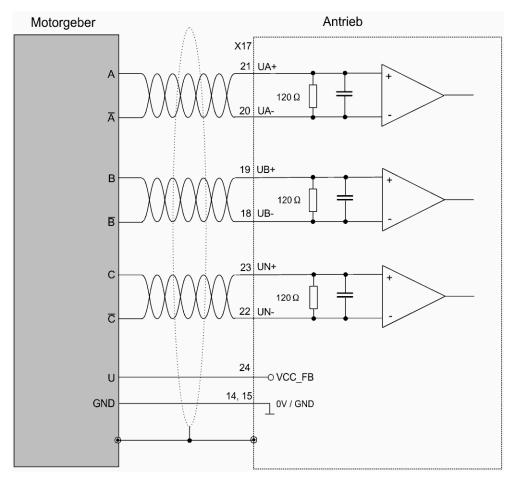


Abb. 81: Hall-Geber 5,3 V

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

9.6.8 Feldplatten

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie vor dem Anschließen, ob das richtige Messsystem in der Software parametriert wurde.

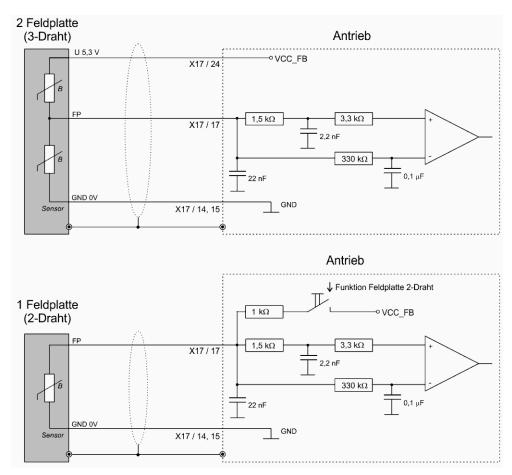


Abb. 82: Feldplatten - 2-Draht und 3-Draht

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

Hinweis

Eine digitale Feldplatte (z. B. GMR-Sensor) wird an Stecker X15 (Pin 6) angeschlossen, siehe Anschlussbeispiel <u>Seite 131</u>.

9.6.9 Inkrementalgeber mit TTL-Signalen (5,3 V)

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie vor dem Anschließen, ob das richtige Messsystem in der Software parametriert wurde.

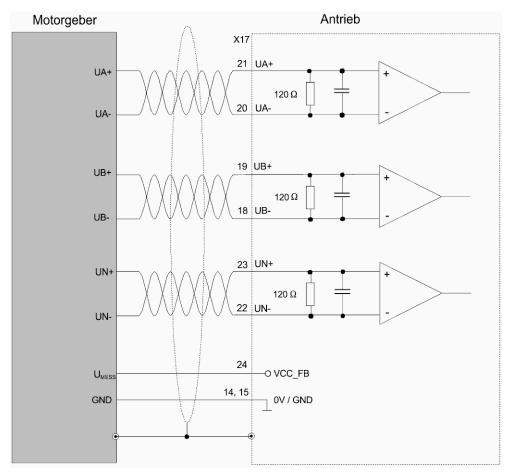


Abb. 83: Inkrementalgeber mit TTL-Signalen

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

9.6.10 Inkrementalgeber 12 V

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

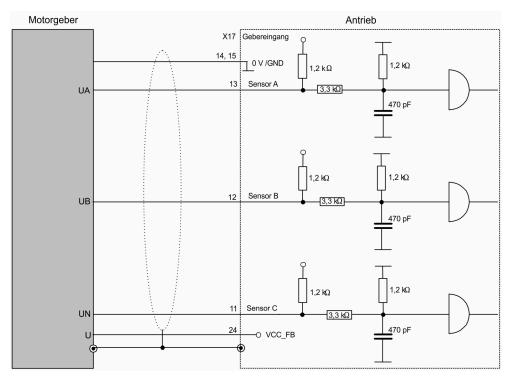


Abb. 84: Inkrementalgeber 12°V

Bei diesem Messsystem ist eine Geberbruchüberwachung nicht möglich.

VCC_FB wird beim Parametrieren dieses Messsystems auf 12 V geschaltet.

9.6.11 PULSE IN 5 V

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie vor dem Anschließen, ob das richtige Messsystem in der Software parametriert wurde.

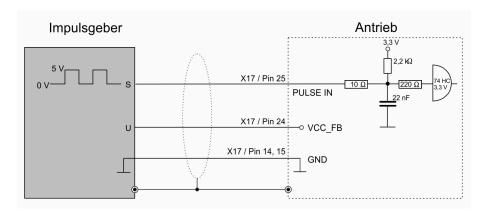


Abb. 85: PULSE IN 5 V

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

Hinweis

Ein Impulsgeber für 24 V wird an Stecker X15 (Pin 6) angeschlossen, siehe Anschlussbeispiel Kapitel 9.4.3 "PULSE IN 24 V", Seite 131.

9.6.12 RENISHAW BISS C-Mode (unidirektional)

ACHTUNG

Spannung (VCC) variiert mit eingestelltem Messsystem

Wird das aufgesteckte Messsystem mit einer falschen Spannung betrieben, kann es beschädigt werden.

→ Überprüfen Sie **vor dem Anschließen**, ob das richtige Messsystem in der Software parametriert wurde.

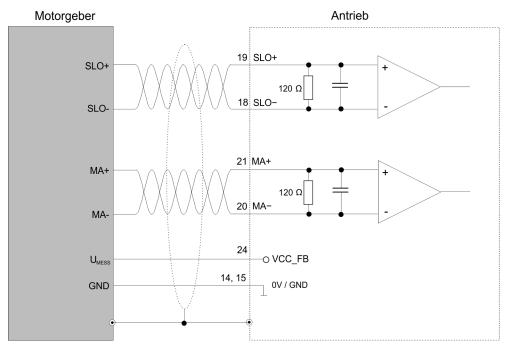


Abb. 86: RENISHAW BiSS C-Mode (unidirektional)

VCC_FB wird beim Parametrieren dieses Messsystems auf 5,3 V geschaltet.

Voraussetzungen

- ▶ ab Geräteversion 4.xxx
- ► Firmware ab f04011v04017, Logik ab l04004v04019
- drivemaster2 ab V1.20 Build 75-17.7.2020

9.6.13 Motortemperaturfühler

EIN-/AUSGANG: Der thermische Motorschutz wird über diese Anschlüsse ausgewertet.

Der Antriebsverstärker unterstützt die Auswertung einer im Motor integrierten Temperaturüberwachung. Das NTC- bzw. PTC -Verhalten der Überwachung wird durch die Software (Motorparameter) spezifiziert. Der Regler wird deaktiviert, sobald die kritische Motortemperatur erreicht ist.

Parametrierbar ist "Kein", "PTC / Thermoschalter", "NTC", "KTY84/130", "KTY83/122" und "PT1000".

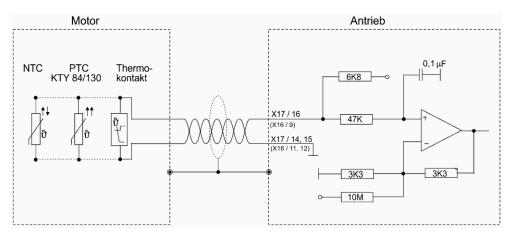


Abb. 87: Motortemperaturfühler

Der Temperaturfühler muss einen Innenwiderstand von 250 Ω bis 2 k Ω haben.

Hinweis

Wird kein Motortemperaturfühler angeschlossen, muss der Eingang mit GND verbunden werden.

9.7 X18 – Analoge Ein-/Ausgänge

9.7.1 Analoge Ausgänge

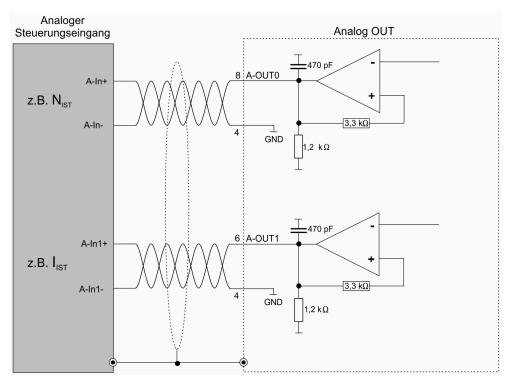


Abb. 88: Analoge Ausgänge

Ausgangsspannung konfigurierbar: 0 bis +10 V, max. 1 mA

9.7.2 Analoge Eingänge

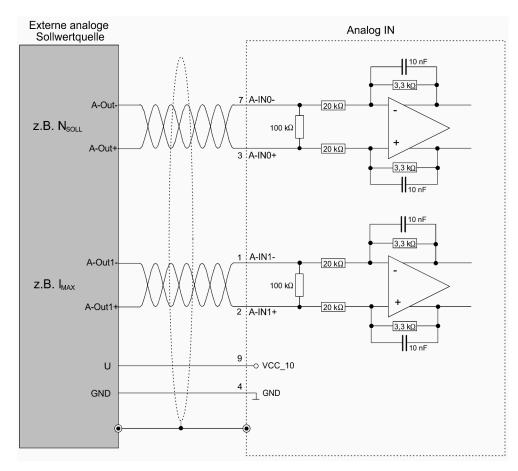


Abb. 89: Analoge Eingänge

Spannungsschnittstelle mit Eingangsspannungsbereich: ±10 V

Auch mit einem Poti beschaltbar (500 Ω - 5 k Ω)

9.8 X19 – Busanbindung

9.8.1 COM1 – RS232-Schnittstellen

COM1 - RS232-Schnittstelle 1

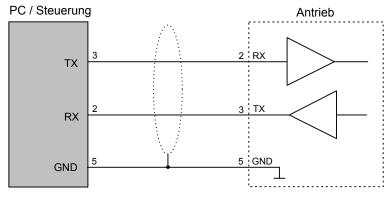


Abb. 90: RS232-Schnittstelle (X19)

Wenn Sie X19 mit einer RS232-Standardschnittstelle am PC (9-poliger D-Sub-Stecker) verbinden möchten, muss das verwendete Kabel wie folgt aufgebaut sein:

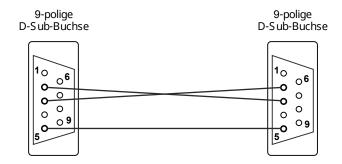


Abb. 91: RS232-Kabel

COM1 - RS232-Schnittstelle 2

Zusätzliche RS232-Anschlussmöglichkeit:

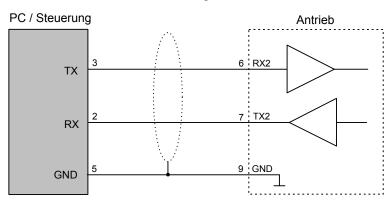


Abb. 92: RS232-Schnittstelle 2 (X19)

9.8.2 **CAN-Bus**

Die CAN-Schnittstelle ist gemäß ISO 11898 ausgeführt. Es handelt sich dabei um eine Zweidrahtverbindung mit Differenzsignalen. ISO 11898 spezifiziert ein Buskabel mit zwei Signalleitungen CAN_H und CAN_L, die Leitungen haben eine Nennimpedanz von 120 Ohm. An den beiden Enden des Buskabels werden die Signalleitungen mit jeweils einem Abschlusswiderstand (120 Ohm) verbunden (siehe Abbildung).

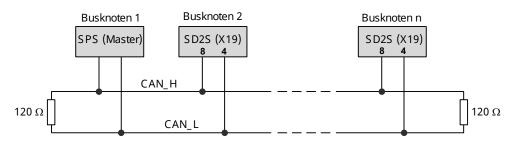


Abb. 93: CAN-Schnittstelle

Die Länge des gesamten Buskabels darf die vorgegebenen Längen nicht überschreiten. Der folgenden Tabelle können die physikalischen Begrenzungen, die für bestimmte Übertragungsraten gelten, entnommen werden:

Übertragungsrate	Max. Länge des Busses
50 kBd	1000 m
125 kBd	500 m

Übertragungsrate	Max. Länge des Busses
250 kBd	250 m
500 kBd	100 m
1000 kBd	25 m

Durch die Spezifikation gemäß ISO 11898 ist auch die Anzahl der Busknoten begrenzt. Sie liegt zwischen 32 und 100 Busknoten. Die Anzahl ist abhängig von dem verwendeten Kabel und der Übertragungsrate. Genauere Informationen über die maximale Anzahl der Busknoten finden Sie in dem Dokument "CAN Physical Layer" der Nutzerorganisation CiA e. V.

9.9 X22A/ X42/ X45/ X47/ X49/ X57 – Motorphasen

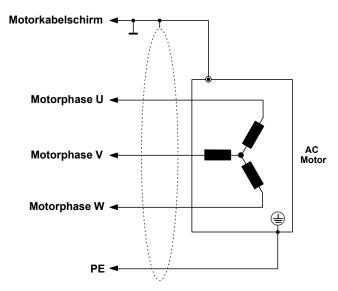


Abb. 94: Motorphasenanschluss

Motorgehäuse in der Maschine erden!

A GEFAHR

Gefährliche Körperströme

Legen Sie das Motorgehäuse auf Maschinenerde oder

verbinden Sie den Erdanschluss des Motorsteckers mit dem zentralen Erdungspunkt der Maschine.

→ Für die Schirmung beachten Sie Folgendes: Verwenden Sie generell abgeschirmte Motorkabel.

Hinweis

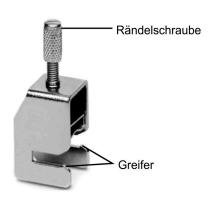
Voice-Coil-Motoren werden prinzipiell über die Motorphasen U und W angeschlossen. Die Stromparameter können für Voice-Coil-Motoren nur als Sinusscheitelwerte (A_S) angegeben werden, nicht als Effektivwerte (A_{eff}).

Verwandte Themen

Motorkabel, Seite 166

9.10 Schirmung des Motorkabels

Für den Betrieb des SD2S ist es notwendig, das Motorkabel zu schirmen. Je nach Gerät und Verwendung sind evt. weitere Schirmungsmaßnahmen erforderlich.

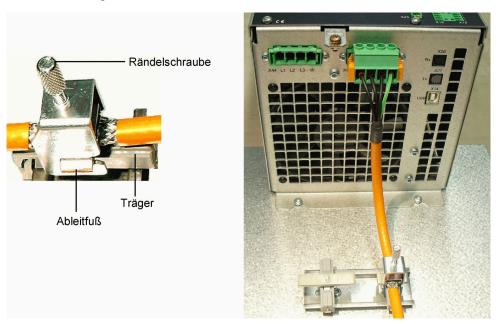

In den folgenden Beispielen wird die Schirmung eines Motorkabels mit einer Schirmanschlussklemme von Phoenix beschrieben (siehe <u>Herstellernachweis (S. 197)</u>):

- Beispiel 1 zeigt die Schirmung eines Motorkabels an der Unterseite des Gerätes. Diese Möglichkeit ist den Geräten 0362x40xx(A) bis 0362x43xx sowie 0362120xx und 0362121xx vorbehalten.
 - Bei den Geräten 0362144xx bis 0362x48xx kann auf diese Weise ein schmales Kabel am Gerätegehäuse geschirmt werden, z. B. Messsystemkabel. (Bei älteren Geräteständen ist diese Möglichkeit noch nicht vorhanden.)
- Beispiel 2 zeigt die Schirmung eines Motorkabels auf einer Hutschiene.
 Diese Möglichkeit ist eine Alternative zu Beispiel 1 und kann verwendet werden, wenn die Schirmanschlussklemme am Gerät zu schmal für das verwendete Kabel ist

Beispiel 1: Schirmung am Gerät

Im Folgenden wird das Auflegen des Kabelschirms am Gerätegehäuse am Beispiel des Motorkabels eines 0362140xx gezeigt.

- Isolieren Sie das Motorkabel auf einer Länge von etwa 30 mm in Höhe der Klemme ab.
- Platzieren Sie das Motorkabel zwischen den Langlöchern auf der Unterseite des Gerätes.
- 3. Schwenken Sie die Klemme über dem Kabel in den Langlöcher ein.
- 4. Schieben Sie die Klemme soweit nach hinten, dass die Greifer in den Rundlöchern einrasten.
- Fixieren Sie das Kabel mit der Rändelschraube.
 - SK 8: max. Anzugsdrehmoment = 0,6 Nm
 - SK 14: max. Anzugsdrehmoment = 0,8 Nm
 - SK 20: max. Anzugsdrehmoment = 0,8 Nm



Beispiel 2: Schirmung auf einer Hutschiene

Im Folgenden wird das Auflegen des Kabelschirms auf einer Hutschiene am Beispiel des Motorkabels eines 0362145xx gezeigt.

- 1. Befestigen Sie eine Hutschiene mit einem Träger für die Klemme (z. B. "Träger mit Ableitfuß" von WAGO, siehe <u>Herstellernachweis (S. 198)</u>) unter dem Gerät.
- Isolieren Sie das Motorkabel auf einer Länge von etwa 30 mm in Höhe der Klemme ab.
- 3. Platzieren Sie das Motorkabel auf dem Träger.
- 4. Schieben Sie die Klemme über dem Kabel in den Ableitfuß des Trägers.
- 5. Fixieren Sie das Kabel mit der Rändelschraube.
 - SK 8: max. Anzugsdrehmoment = 0,6 Nm
 - SK 14: max. Anzugsdrehmoment = 0,8 Nm
 - SK 20: max. Anzugsdrehmoment = 0,8 Nm
 - SK 35: Anzugsdrehmoment = 1,5 bis 1,8 Nm

9.11 X26/X27 - SERVOLINK

Abb. 95: SERVOLINK 4

9.12 X28 - Einspeisung 0362121xC/ 0362x41xC(A)/ 0362x42xx/ 0362x43xx

1-phasige Einspeisung

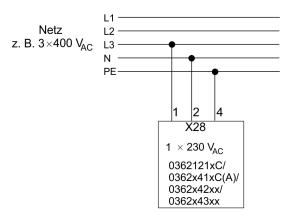


Abb. 96: Netzanschluss 0362121xC/ 0362x41xC(A)/ 0362x42xx/ 0362x43xx (1-phasig)

3-phasige Einspeisung

Die 3-phasige Einspeisung größer $3 \times 230 \text{ V}_{AC}$ ist nur mit Netztransformator möglich:

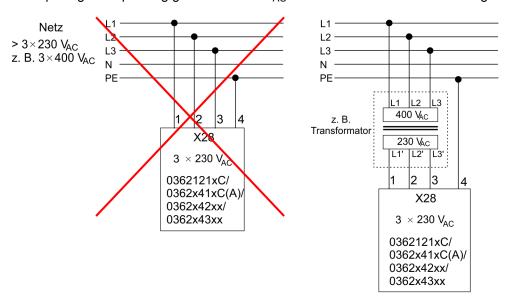


Abb. 97: Netzanschluss 0362121xC/ 0362x41xC(A)/ 0362x42xx/ 0362x43xx (3-phasig) mit Netztransformator

9.13 X41/X63 - Externer Ballastwiderstand

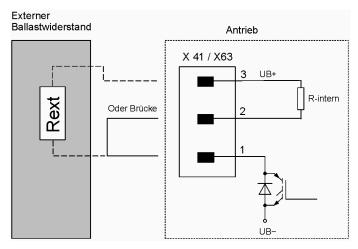
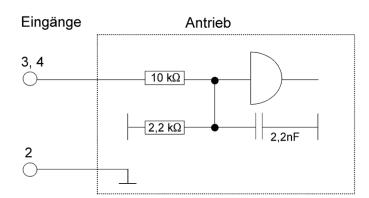



Abb. 98: Externer Ballastwiderstand

9.14 **X55 – Fehlerbus**

Signal Zustand

0 bis 5V L

12 bis 24V H

Abb. 99: Fehlerbus

Hardware-Statussignale PERR0/PERR1

ERR0	ERR1	Bedeutung
0	0	Externes Netzteil ist ausgeschaltet.
1	0 Über- oder Unterspannung ist aufgetreten.	
0	1	Externes Netzteil ist eingeschaltet, aber das Netz fehlt.
1	1	Externes Netzteil ist eingeschaltet.

Hinweis

Sollte das externe Netzteil lediglich ein Statussignal "Power OK" liefern, muss dieses Signal auf Pin 3 **und** Pin 4 gelegt werden.

9.15 X64/X65 - EtherCAT

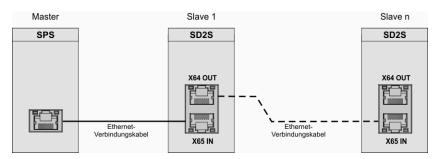


Abb. 100: EtherCAT-Verbindung

Ethernet-Verbindungskabel: Verwenden Sie zur Verbindung von EtherCAT-Geräten nur Ethernet-Kabel, deren Kabelgüte Cat 5 (Class D) oder besser entspricht. Es können sowohl Patchkabel (1:1) als auch Crossover-Kabel (TX zu RX gedreht) verwendet werden, da die Empfängerstufen (PHY) über eine automatische Kabelerkennung (Auto-Crossover-Funktion) verfügen.

9.16 Gehäuseerdung

Über die Einpressmutter mit der Kennzeichnung ⊕ kann das Gerät am Gehäuse geerdet werden.

Verwenden Sie eine M4-Schraube (max. Länge 8 mm) und eine Federscheibe für die Erdung.

10.1 LED-Statusanzeige: EtherCAT-Verbindung

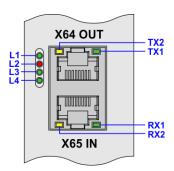


Abb. 101: EtherCAT-LEDs (Geräteunterseite)

LED	Farbe	Zustand	Bedeutung
TX1	grün	*	Datenübertragung (TX) aktiv
TX2	gelb	*	Geschwindigkeit = 100 MBit
RX1	grün	*	Datenempfang (RX) aktiv
RX2	gelb	*	Geschwindigkeit = 100 MBit

LED	Farbe	Zustand	Bedeutung	
L1 – Status	grün	0	Init: Kommunikation zwischen Master und Slave (Antrieb) ist nicht möglich	
		(schnell)	Pre-Operational: Nur SDO-Kommunikation ist möglich. Es werden keine Prozessdaten übertragen. Die LED blinkt in folgendem Takt: LED aus 200 ms 200 ms 200 ms	
		(langsam)	Safe-Operational: Als Prozessdaten werden nur Istwerte vom Slave (Antrieb) an den Master übertragen. SDO-Kommunikation ist möglich. Die LED blinkt in folgendem Takt:	
		*	Operational: Der vollständige Prozessdatenkanal ist aktiv.	
L2 – Fehler	rot	*	Kommunikationsfehler	
L3 – Prozessor	grün	☀	Prozessor-Watchdog: Prozessor aktiv	
L4 – Prozessor	grün	☀	(L3 und L4 blinken abwechselnd.)	

10.2 7-Segment-Anzeige

In der 7-Segment-Anzeige werden Status- und Fehlermeldungen angezeigt.

Eine Statusmeldung ist 1- bis 5-stellig und wird durchlaufend angezeigt. Alle Meldungen schließen mit einem Punkt hinter der letzten Stelle ab. Steht an erster Stelle 'E.', liegt ein Fehler dauerhaft an. Wenn die Ursache eines Fehlers näher bestimmt werden kann, wird nach dem Fehlercode zunächst ein Trennstrich und dann ein 1-stelliger Subfehlercode angezeigt.

Hinweis

Der Subfehlercode wird bei Geräten mit einer älteren Firmware nicht unterstützt.

Beispiele:

- 2.
- 4. **E** → **Y** → **O**
- 6.
- 8.

Dauernde Anzeige 0

- ► Regler ist ausgeschaltet.
- ► Kein Fehler liegt an.

Dauernde Anzeige 1

- ► Regler ist eingeschaltet.
- ► Kein Fehler liegt an.

Dauernde Anzeige 1.

- Regler ist eingeschaltet.
- Kein Fehler liegt an.
- ► Punkt weist zusätzlich auf PI-Limit hin.

Durchlaufende Anzeige

- ► Regler hat mit Fehler E40 abgeschaltet.
- ► Der Fehler liegt nicht mehr an.

Durchlaufende Anzeige

- ▶ Regler hat mit Fehler E40 abgeschaltet.
- Der Fehler liegt noch an (erkennbar an dem Punkt hinter dem E).

Durchlaufende Anzeige

- ▶ Regler hat mit Fehler E11 abgeschaltet.
- Der Fehler liegt noch an (erkennbar an dem Punkt hinter dem E).
- ► Als Ursache ist der Subfehlercode 4 angegeben.

Durchlaufende Anzeige

 Regler ist im Bootloader: Anzeige erscheint kurz beim Booten des Gerätes und beim Laden von Systemsoftware.

Durchlaufende Anzeige

 Achsadresse: Beim Booten der Geräte erscheint kurz die eingestellte Achsadresse (hier A01)

10.2.1 Liste der Betriebszustände

Code	Beschreibung
0	Einschaltbereit
1	Regler aktiv
1.	Regler aktiv, Regler in Begrenzung / PI-Limit
2	Netz-Betriebsbereit noch nicht vorhanden
L	Bootlader aktiv (beim Booten / Software laden)

10.2.2 Liste der Antriebsfehlermeldungen

Hinweis

Die nachfolgenden Meldungen gelten für die gesamte SD2x-Antriebsbaureihe. Je nach Gerätetyp oder Antriebsart kann es sein, dass bestimmte Meldungen nicht vorkommen.

Code	Feh	lermeldung	Fehlerreaktion	Mög	gliche Ursache	
E03 (0x103)		rpolationsfehler (Interpolierte eregelung)	Motor wird mit Schnellhaltrampe gebremst und Antrieb wird freige-		► Fehlerhaftes Bewegungsprofil der übergeordneten Steuerung	
(259 <i>d</i>)	1 Beschleunigungsüberschreitung		schaltet (gesteuertes Stillsetzen).			
	2	Geschwindigkeitsüberschreitung				
	3	Indexfehler				
E05 (0x105) (261 <i>d</i>)	Feh	ler durch Warnung	Motor wird mit Schnellhaltrampe gebremst und Antrieb wird freige- schaltet (gesteuertes Stillsetzen).		Parametrierbare Überwachung hat den Antrieb stillgesetzt.	
E06 (0x106)	Digi war	taler Eingang ,Externe Hard- e'	Motor wird mit parametrierbarer Rampe gebremst und Antrieb wird		Überwachung externe Hardware:	
(262 <i>d</i>)	0	Digitaler Eingang	freigeschaltet (gesteuertes Stillsetzen).	0	Digitaler Eingang "Externe Hardware OK" ist nicht mit 24 V beschaltet.	
	1	Analogeingang 0: Kabelbruch		1	Mindeststromüberwachung des analogen Eingangs 0 hat ausgelöst.	
	2	Analogeingang 1: Kabelbruch		2	Mindeststromüberwachung des analogen Eingangs 1 hat ausgelöst.	
	3	Analogeingänge 0 und 1: Kabelbruch		3	Mindeststromüberwachung der analogen Eingänge 0 und 1 hat ausgelöst.	
E07 (0x107) (263 <i>d</i>)	Fehler in interner Hardware		Motor wird mit Schnellhaltrampe gebremst und Antrieb wird freige- schaltet (gesteuertes Stillsetzen).	> (► Überlastung der digitalen Ausgänge	
E09 (0x109) (265 <i>d</i>)	Hiperface / EnDat OEM-Daten feh- lerhaft		Kein "Bereit" zum Starten	f	Motorpolpaarzahl im EnDat-/Hiper- ace-Geber stimmt nicht mit Parame- ersatz überein.	
E10 (0x10A) (266 <i>d</i>)	drive-setup-tool Heartbeat		Motor wird mit Schnellhaltrampe gebremst und Antrieb wird freige- schaltet (gesteuertes Stillsetzen).	r	drive-setup-tool konnte in der para- metrierten Überwachungszeit nicht mit dem Antrieb kommunizieren.	

Code	Fehlermeldung		Fehlerreaktion	Mögliche Ursache		
E11	Kom	nmunikation / Bussystemfehler	Motor wird mit parametrierbarer Rampe gebremst und Antrieb wird	Übe	erwachung der Buskommunikation	
(0x10B) (267 <i>d</i>)		SERVOLINK 4	freigeschaltet (gesteuertes Stillset-	hat zur Abschaltung geführt:		
		DNC 8 Byte	zen).			
		CAN-Bus EtherCAT				
	1			1	Fehlerhaftes Sollwerttelegramm	
		Fehlerhafte Telegramm-ID ¹				
	2	Nulldatentelegramm ¹		2	Übergeordnete Steuerung nicht aktiv	
	3	CRC-Fehler ¹		3	Checksummenfehler, Störungen in der Übertragung	
	4	Synchronisationsfehler ^{1, 4}		4	Antriebstelegramme nicht synchronisiert	
	5	Konfigurationsfehler ⁴		5	Fehlerhafte Konfiguration von Mailbox, PDO, Watchdog oder Synchronisation	
	6	NMT-Fehler ^{2, 3, 4}		6	Steuerkanal des Bussystems war beim Einschalten des Reglers nicht aktiv (Pre-operational)	
	7	Adressierungsfehler ⁴		7	Fehlerhafte Antriebsadressierung	
	8	Node Guarding ³		8	Kommunikationsknotenüberwa- chung: Überwachungszeit abgelau- fen (parametrierbar)	
	9	EEPROM-Fehler 4		9	Fehler im EtherCAT-EEPROM	
	10	Heartbeat / Watchdog ^{2, 3, 4}		10	Heartbeat-Überwachung: Überwa- chungszeit abgelaufen (parame- trierbar)	
E12 (0x10C) (268 <i>d</i>)	Netz-Betriebsbereit fehlt)		Motor wird mit parametrierter Rampe gebremst und Antrieb wird freigeschaltet (gesteuertes Stillsetzen).	5	Netzversorgung wurde bei einge- schalteter Endstufe abgeschaltet/un- erbrochen.	
E15 (0x10F) (271 <i>d</i>)		lerhafte Endat-/Hiperface-Kom- iikation	Motor wird mit Schnellhaltrampe gebremst und Antrieb wird freige- schaltet (gesteuertes Stillsetzen).	Kommunikation von EnDat/Hiperface ist fehlerhaft.		
E17 (0x311) (785 <i>d</i>)	FPG	GA Endstufenabschaltung	Motor wird sofort freigeschaltet.	► Überlast im Leistungsnetzteil		
E17 (0x311) (785 <i>d</i>)		spannungsüberwachung Zwi- enkreis (nur SD2M)	Motor wird sofort freigeschaltet. Netzthyristoren werden nicht mehr angesteuert.	i ▶ (Wer	Fensterbereich der Nullspannungs- überwachung wurde überschritten. Jnsymmetrische Last nden Sie sich bitte an B & MEYER.	
E18 (0x312) (786 <i>d</i>)	Fehl	ler bei Spindelauswahl	Motor wird sofort freigeschaltet.		Keine gültige Spindelanwahl bei Regler Ein"	
E25 (0x319) (793 <i>d</i>)	Auslastung Leistungsnetzteil zu hoch		Antrieb wird mit Begrenzung des Motormoments stillgesetzt.	i: t	Abgegebene Leistung des Antriebs st größer als Nennleistung des Leisungsnetzteils, da die Dimensionieungen von Antrieb und Motor nicht aufeinander abgestimmt sind.	
E26 (0x31A) (794 <i>d</i>)	Motortemperatur zu hoch		Motor wird mit Fehlerrampe und Strombegrenzung stillgesetzt.		Fehlerhafte Parametrierung oder Di- mensionierung des Motors	
E27 (0x31B) (795 <i>d</i>)	Umgebungstemperatur zu hoch		Motor wird mit Fehlerrampe und Strombegrenzung stillgesetzt.	> (Jnzureichende Kühlung des Gerätes	
E28 (0x31C) (796 <i>d</i>)	Temperatur Leistungsendstufe zu hoch		Motor wird mit Fehlerrampe und Strombegrenzung stillgesetzt.		Jnzureichende Kühlung der Leis- ungsendstufe (Kühlkörper)	
E29 (0x31D) (797 <i>d</i>)	Motorauslastung zu hoch (Motor I²t)		Motor wird mit Fehlerrampe und Strombegrenzung stillgesetzt. (1)	r	Mittlere Motorauslastung aufgrund mechanischer Probleme zu groß Fehlerhafte Motorauslegung	

Code	Feh	lermeldung	Fehlerreaktion	Mögliche Ursache	
E30 (0x31E) (798 <i>d</i>)		lastung Leistungsendstufe zu n (I²t)	Motor wird mit Fehlerrampe und Strombegrenzung stillgesetzt. ⁽¹⁾	 Mittlere Endstufenauslastung aufgrund mechanischer Probleme zu groß Fehlerhafte Antriebsdimensionierung 	
E31 (0x31F) (799 <i>d</i>)	Drehzahlfehler bzw. Schlupf zu groß		SERVO / VECTOR: Antrieb wird durch kurzschließen der Motorphasen mit Stromüberwachung begrenzt. ⁽¹⁾ HSPWM: Antrieb wird mit Fehlerrampe und Strombegrenzung stillgesetzt.	► Motor kann der vorgegebenen Drehzahl nicht folgen (z. B.: defekter Motor, mechanische Probleme, fehlerhafte Parametrierung), Messsystem-Aussetzer	
E33 (0x521) (1313 <i>d</i>)		zteilladeüberwachung -> Haupt- nnung zu hoch	Leistungsnetzteil wird vom Netz getrennt.	 Parametrierte Hauptspannung stimmt nicht mit angeschlossener Spannung überein Gerät falsch angeschlossen Starke Schwankungen der Einspeise- spannung in Richtung Überspannung 	
E34 (0x522) (1314 <i>d</i>)		zteilladeüberwachung -> Haupt- nnung zu niedrig	Leistungsnetzteil wird vom Netz getrennt.	 Zwischenkreis konnte nicht in vor- gegebener Zeit auf einen Mindest- spannungspegel vorgeladen wer- den; Hauptspannung wird auf kurzge- schlossenen Zwischenkreis geschal- tet 	
E35 (0x523) (1315 <i>d</i>)	Feh teil	ler im externen Leistungsnetz-	Antrieb wird sofort freigeschaltet, Motor trudelt aus.	 Fehlermeldung vom externen Leis- tungsnetzteil; Netzteil hat abgeschal- tet. 	
E36 (0x524) (1316 <i>d</i>)	Encoder 0 Überwachung		Motor wird durch Kurzschließen der Motorphasen mit Stromüberwachung gebremst.	Anschluss für Encoder 0 fehlerhaftKabelbruch	
E37 (0x525)	Auslastung Ballastschaltung (I²t Ballastwiderstand)		Antrieb wird sofort freigeschaltet, Motor trudelt aus.	Auslastung der Ballastschaltung durch:	
(1317 <i>d</i>)	1	² t		Falsche Dimensionierung, zu viel Energie fließt über R _{Ballast} , Kabelbruch, keine Brücke an R _{Ballast} (int./ ext.)	
	2	UCE-Sat Überwachung oder: Wandlernetzteil überlas- tet (nur 0362144xx)		Palsche Brücke an R _{Ballast} , Kurzschluss der Isolierung etc. oder: interner Hardwaredefekt (nur 0362144xx)	
E37 (0x525) (1317 <i>d</i>)		ndlernetzteil überlastet (nur 2161xx)	Leistungsnetzteil wird vom Netz getrennt.	 Zwischenkreisspannungswandler überlastet 	
E38 (0x526) (1318 <i>d</i>)		rehzahl größer Überdrehzahl- welle	Motor wird durch Kurzschließen der Motorphasen mit Stromüberwa- chung gebremst. ⁽¹⁾	► Falsche Parametrierung► Motor falsch angeschlossen	
E39 (0x527) (1319 <i>d</i>)		leppfehlerüberwachung mit msen des Motors	Motor wird durch Kurzschließen der Motorphasen mit Stromüberwa- chung gebremst. ⁽¹⁾	 Falsche Parametrierung Motor falsch angeschlossen Mechanische Probleme 	
E40 (0x528) (1320 <i>d</i>)			Motor wird durch Kurzschließen der Motorphasen mit Stromüberwachung gebremst. (1)	 Anschluss für Motorfeedback fehler- haft Kabelbruch 	
E41 (0x529)	Motorphase fehit		Motor wird durch Kurzschließen der Motorphasen mit Stromüberwa-	Motoranschluss/-parametrierung fehler- haft:	
(1321 <i>d</i>)	1	Kein Motor angeschlossen	chung gebremst. ⁽¹⁾	Kein Motor angeschlossen/falsche Verdrahtung, Kabelbruch	
	2	Falscher Motor angeschlos- sen		2 Falsche Parametrierung	
E42 (0x52A) (1322d)	Übe	rspannung Zwischenkreis	Antrieb wird sofort freigeschaltet, Motor trudelt aus.	 Kein oder zu klein dimensionierter Ballastwiderstand angeschlossen bzw. X41/X63 nicht beschaltet 	
E43 (0x52B) (1323 <i>d</i>)	Unterspannung Zwischenkreis		Antrieb wird sofort freigeschaltet, Motor trudelt aus.	➤ Zwischenkreis nicht angeschlossen	

Code	Feh	lermeldung	Fehlerreaktion	Mög	gliche Ursache
E44 (0x52C) (1324 <i>d</i>)	Bei gen triek kani	HSBLOCK FPAM SVC HSPWM UF Überwachung EMK ^{1, 2, 3 4} Überwachung Fluss ⁴ Überwachung Überstrom ⁴ Überwachung Unterfluss ⁴ Überwachung min. Drehzahl ^{1, 2, 3} Fehler beim Setzen ^{1, 2} Strombegrenzung UF	Antrieb wird sofort freigeschaltet, Motor trudelt aus.	E S F Ü is	Der Fehler E44 wird bei fehlerhafter Bestromung des Motors im geberlosen Betrieb ausgelöst. Fehlerhafte Parametrierung oder Überlastung des Motors. Der Fehler st abhängig von der Antriebsfunktion. Nähere Informationen finden Sien den entsprechenden Einstellanleiungen.
E45 (0x52D)	Kurz	schwingt ⁵ zschluss Leistungsendstufe	Antrieb wird sofort freigeschaltet, Motor trudelt aus.	Kurz	zschluss der Leistungsendstufe
(1325 <i>d</i>)	1	Interner Kurzschluss		1	Fehlerhafte Ansteuerung
	2	UCE-Sat Überwachung		2	Fehlerhafte Parametrierung, Endstufe defekt, Kabelbruch, Kurzschluss etc.
	3	Erdschluss		3	Erdschluss einer Motorphase
	4	Strommessbereich		4	Fehlerhafte Parametrierung, End- stufe defekt, Kabelbruch, Kurz- schluss etc.
	5	Überstrom Motor		5	Antriebsfunktion U/f: "Fangen" falsch parametriert
E46 (0x52E) (1326 <i>d</i>)	1	Sicherheitsschaltung (Safety X10)	Antrieb wird sofort freigeschaltet, Motor trudelt ungeregelt aus.	1	Sicherheitsschaltung STO wird bei aktiver Leistungsendstufe aktiviert. Eingang SAFE A und/oder Eingang SAFE B wurden ausgelöst.
	2	Initialisierungsfehler: interne Hardware Sicherheitskontrol- ler		2	Sicherheitsfunktion SFM/SLOF: Fehler in der entsprechenden Hardwarekomponente des Sicher- heitskontrollers
	3	Fehlerhafte Daten/Parameter im Prozessablauf		3	Sicherheitsfunktion SFM/SLOF: fehlerhafte SPS-Telegramme
	4	Fehler der Funktionsparameter für einen Funktionsteil		4	Sicherheitsfunktion SFM/SLOF: Parameter außerhalb der Grenzen
	5	Zeitüberschreitung bei Überwachungsfunktionen		5	Sicherheitsfunktion SFM/SLOF: Fehler in der entsprechenden Hardwarekomponente
	6	Überwachung der OSSD-Signale und der Endstufenfreigabe		6	Sicherheitsfunktion SFM/SLOF: In falsche OSSD-Signale OSSD-Relais defekt Multiplexer defekt
	7	Überwachung der Motorphasen		7	Sicherheitsfunktion SFM/SLOF: defektes Motorkabel (Kabelbruch)
	8	Frequenzüberschreitung		8	Sicherheitsfunktion SFM/SLOF: ► Vorgabe der Sollgeschwindigkeit ist zu hoch ► Grenzwert für sicher begrenztes Drehfeld falsch parametriert ► Falsche OSSD-Signalvorgabe

Code	Fehlermeldung	Fehlerreaktion	Mögliche Ursache
	9 Kommunikationsfehler zwi- schen DSP und Sicherheits- kontroller		9 Sicherheitsfunktion SFM/SLOF: Kommunikation zwischen DSP und Sicherheitskontroller ist gestört
E47 (0x52F) (1327 <i>d</i>)	Antriebsparameter noch nicht aktiviert	Leistungsendstufe kann nicht aktiviert werden.	 Master hat Antriebsstart noch nicht quittiert (parametrierbar).
E55 (0x737) (1847 <i>d</i>)	Firmware durch ESC angehalten	Gerät bleibt im BIOS stehen.	 Gerät hat beim Booten eine ESC-Se- quenz an der seriellen Schnittstelle empfangen.
E56 (0x738) (1848 <i>d</i>)	Gerätekonfiguration	Gerät bleibt im BIOS stehen.	Gerät hat beim Booten festgestellt, dass Hardware, Parameter Firm- ware und Logik nicht konsistent sind. Durch einen Parameterdownload er- hält man eine eindeutige Fehlerbe- schreibung.
E57 (0x739) (1849 <i>d</i>)	Fehlerhafte bzw. keine Firmware	Gerät bleibt im BIOS stehen.	► Gerät hat beim Booten festgestellt, dass keine bzw. eine zerstörte Firm- ware im Gerät vorhanden ist.
E58 (0x73A) (1850 <i>d</i>)	FPGA Watchdog hat ausgelöst	Gerät bleibt im BIOS stehen.	► FPGA-Prozessüberwachung wurde ausgelöst. Wenden Sie sich bitte an SIEB & MEYER.
E59 (0x73B) (1851 <i>d</i>)	Keine Antriebsparameter geladen	Gerät bleibt im BIOS stehen.	 Gerät ist nicht parametriert (Auslieferungszustand).
E60 (0x73C) (1852d)	Fehlerhafte Antriebsparameter	Gerät bleibt im BIOS stehen.	► Gerät enthält keinen gültigen Parametersatz (CRC-Fehler).
E61 (0x73D) (1853 <i>d</i>)	Fehlerhafte oder keine Logikpro- grammierung vorhanden	Gerät bleibt im BIOS stehen.	Gerät enthält keine gültige Logikpro- grammierung.
E62 (0x73E) (1854 <i>d</i>)	Fehler im elektronischen Typen- schild	Gerät bleibt im BIOS stehen.	 Keine oder fehlerhafte Typenschild- programmierung. Wenden Sie sich bitte an SIEB & MEYER.

⁽¹⁾ Bei Servomotoren mit Kommutierung durch ein inkrementelles Motormesssystem wird die Warnung W17 "Kommutierungswinkel nicht bekannt " gesetzt. Nach einem Neustart des Gerätes wird automatisch das Einphasen mit dem Motormesssystem gestartet (Setzen).

10.2.3 Liste der Warnmeldungen

Warnmeldungen werden nicht in der Geräteanzeige angezeigt, sondern ausschließlich in der Software *drivemaster2* unter "Diagnose → Fehler und Warnungen".

Code	Beschreibung
W00	Digitaler Eingang ,Schnellhalt' ist aktiv
W01	Digitaler Eingang ,Endschalter positiv' ist aktiv
W02	Digitaler Eingang ,Endschalter negativ' ist aktiv
W03	Spannung der Haupteinspeisung ist nicht OK
W04	Auslastung der Leistungsendstufe größer als parametrierte Warnungsschelle W04(Leistungsendstufe l²t)
W05	Motorauslastung größer als parametrierte Warnungsschwelle W05 (Motor I²t)
W06	Temperatur der Leistungsendstufe größer als parametrierte Warnungsschwelle W06
W07	Motortemperatur größer als parametrierte Warnungsschwelle W07
W08	Zwischenkreisspannung größer als parametrierte Warnungsschwelle W08
W09	Zwischenkreisspannung kleiner als parametrierte Warnungsschwelle W09
W10	Drehzahlregler/Geschwindigkeitsregler arbeitet in der Strombegrenzung / PI-Limit
W11	Betrag des Positions-/Schleppfehlers größer als parametrierte Warnungsschwelle W11
W12	Betrag des Drehzahl-/Geschwindigkeitsfehlers größer als parametrierte Warnungsschwelle W12
W13	Betrag des Schleppfehlers des Stroms ist zu hoch

Code	Beschreibung
W14	Umgebungstemperatur größer als parametrierte Warnungsschwelle W14
W15	Auslastung des Ballastwiderstands größer als parametrierte Warnungsschwelle W15 (Ballastwiderstand I²t)
W16	Sicherheitsschaltung ist aktiv
W17	Kommutierungswinkel nicht bekannt
W18	OEM-Daten im Motormesssystem EnDat oder Hiperface nicht gültig
W19	Verschmutzungssignal Encoder-Eingang 0
W20	Verschmutzungssignal Encoder-Eingang 1
W21	Verschmutzungssignal Encoder-Eingang 2
W22	Auslastung Leistungsnetzteil größer als 90% der Nennleistung
W23	reserviert
W24	Strom bzw. Stromanstieg größer als Warnungsschwelle W24 (Warnung Strom)
W25	Drehzahlsollwert kleiner als Motorminimaldrehzahl
W26	Strom größer als Warnungsschwelle W26 (Warnung Überstrom)
W27	reserviert
W28	reserviert
W29	reserviert
W30	reserviert
W31	reserviert

10.2.4 Meldungen der Schnellhaltefunktionen

Code	Beschreibung		
H01	Digitaler Eingang "Regler Ein" wartet auf eine positive Flanke zum Einschalten des Antriebs (Die Funktion ist nur aktiv, wenn der Eingang als "Regler Ein Typ 2 (mit positiver Flanke)" parametriert ist.)		
H03	Softwarefunktion "Schnellhalt"		
H04	Digitaler Eingang "Schnellhalt"		
H07	Softwarefahrbereich "Negative Grenze"		
H08	Softwarefahrbereich "Positive Grenze"		
H09	Bussystem "Schnellhalt" (Im Steuerwort des Bussystems ist das Schnellhaltbit auf 0 gesetzt.)		
H11	Digitaler Eingang "Negativer Endschalter"		
H12	Digitaler Eingang "Positiver Endschalter"		
H13	Digitaler Eingang "Speed Enable"		
H14	Magnetlager Kalibrierung aktiv		

11 Allgemeine Hinweise zur Verdrahtung

11.1 Netzanschluss

ACHTUNG

Sachschäden durch unsachgemäßen Netzanschluss

Durch direkten Anschluss an **ungeerdete / asymmetrisch geerdete Netze** (IT-Netz mit Sternpunkt / IT-Delta-Netz) können die Geräte zerstört werden.

Der Anschluss an diese Netzform ist nur mit Trenntransformator möglich.

→ Beachten Sie hierzu die Dokumentation "EMV-gerechter Geräteaufbau", Kapitel "Anschluss an verschiedene Netzformen".

11.1.1 Netzdrosseln

Netzdrosseln begrenzen niederfrequente Netzrückwirkungen und entlasten die Halbleiter und die Zwischenkreiskondensatoren von Antriebsverstärkern.

Für den S1-Betrieb eines SIEB & MEYER-Antriebssystems ist eine Netzdrossel zwingend erforderlich (siehe <u>Kapitel E.1.5 "Netzdrosseln", Seite 195</u>).

11.2 Kabelanforderungen

Die in diesem Abschnitt beschriebenen Kabel entsprechen den Anforderungen, die SIEB & MEYER für eine einwandfreie Funktion einer Kabelverbindung fordert.

ACHTUNG

Risiko von Kabelschäden durch mechanische Belastungen

Kabel, die mechanischen Belastungen ausgesetzt werden, z.B. in Schleppketten o.ä., müssen für diesen Zweck geeignet sein. Andernfalls können Sachschäden auftreten. Die Kabel der Fa. SIEB & MEYER sind nicht schleppkettenfähig!

- → Der Maschinenhersteller muss dafür Sorge tragen, dass nur für diesen Zweck geeignete Kabel verwendet werden.
- Alle Anschlussleitungen, die an den Geräten verdrahtet werden, müssen mit einer entsprechenden Zugentlastung gemäß DIN EN 61800-5-1 versehen werden. Dies gilt insbesondere, wenn keine Schirmanschlussklemmen (SK 8-D, SK14-D von Phoenix) am Chassis verwendet werden.

Prinzipiell gelten für Kabel die folgenden Regeln (siehe auch Dokumentation "EMV-gerechter Geräteaufbau")

- Motor- und Signalkabel dürfen nicht zusammen in einem Kabelschutzschlauch verlegt werden!
- Motorkabel müssen mit Drahtgeflecht abgeschirmt sein. Sie sind getrennt von Signalleitungen zu verlegen.
- ► Signalleitungen müssen mit Drahtgeflecht abgeschirmt sein. Differenzsignale sollten nur mit paarig verdrillten Leitungen übertragen werden. Sie sind getrennt von Motorkabeln zu verlegen.

- ▶ Die Kabelschirme müssen in den Steckern mit dem Steckergehäuse verbunden und im Schaltschrank möglichst auf einer Erdungsschiene aufgelegt werden.
- Schirme von Kabeln, die im Schaltschrank nicht in einem Stecker enden, wie z. B. Motorkabel, müssen auf der Erdungsschiene geerdet werden.
- ▶ Beide Schirmenden von geschirmten Kabeln sind grundsätzlich an das Gehäuse zu verlegen.

Die Leitungsquerschnitte sollten so ausgewählt werden, dass die zulässigen Strombelastungswerte bei maximaler Umgebungstemperatur (siehe technische Daten) nicht überschritten werden. Die zulässigen Werte für die einzelnen Leitungsquerschnitte sind durch die DIN EN 60204-1 vorgegeben und unbedingt zu beachten.

Die Strombelastbarkeit im Zusammenhang mit dem Leitungsquerschnitt von PVC-isolierten Kupferleitern oder Kabeln nach DIN EN 60204-1 bei unterschiedlichen Verlegearten entnehmen Sie folgender Tabelle. Alle Angaben beziehen sich auf eine Umgebungstemperatur von +40 °C und eine Betriebstemperatur am Leiter von 70 °C.

Querschnitt A [mm²]	Strombelastbarkeit I [A]			
	Verlegeart B2 ⁽¹⁾	Verlegeart C ⁽²⁾	Verlegeart E ⁽³⁾	
0,75	8,5	9,8	10,4	
1,00	10,1	11,7	12,4	
1,50	13,1	15,2	16,1	
2,50	17,4	21	22	
4	23	28	30	
6	30	36	37	
10	40	50	52	
16	54	66	70	
25	70	84	88	
35	86	104	110	
50	103	125	133	
70	130	160	171	
95	156	194	207	
120	179	225	240	

Tab. 2: Strombelastbarkeit nach DIN EN 60204-1

Für abweichende Umgebungstemperaturen sind folgende Korrekturfaktoren vorgesehen:

Umgebungstemperatur T [°C]	Korrekturfaktor
30	1,15
35	1,08
40	1,00
45	0,91
50	0,82
55	0,71
60	0,58

Querschnitte von runden Leitern

Die Normwerte des Querschnittes von runden Kupferleitern sind in der folgenden Tabelle dargestellt, die auch die ungefähre Beziehung metrischer ISO- und AWG/MCM-Größen angibt.

⁽¹⁾ Verlegung in Installationsrohren oder geschlossenen Installationskanälen auf oder in Wänden oder in Kanälen für Unterflurverlegung (mehradrige Kabel oder Mantelleitungen)

⁽²⁾ Direkte Verlegung auf oder in Wänden/Decken oder in Kabelwannen (mehradrige Kabel oder Mantelleitungen)

⁽³⁾ Verlegung einer Leitung frei in der Luft an Tragseilen sowie auf Kabelpritschen mit einem Mindestabstand von 0,3 × Kabeldurchmesser zur Wand (mehradrige Kabel oder Mantelleitungen)

Genormte Querschnitte von runden Leitern:

ISO-Querschnitt [mm²]	AWG/MCM		
	Größe	Äquivalenter Querschnitt [mm²]	
0,2	24	0,205	
_	22	0,324	
0,5	20	0,519	
0,75	18	0,82	
1,0	_	-	
1,5	16	1,3	
2,5	14	2,1	
4,0	12	3,3	
6,0	10	5,3	
10	8	8,4	
16	6	13,3	
25	4	21,2	
35	2	33,6	
50	0	53,5	
70	00	67,4	
95	000	85,0	
-	0000	107,2	
120	250 MCM	127	

Hinweis

Der Strich zählt als Größe, wenn das Anschlussvermögen berücksichtigt wird.

11.2.1 Motorkabel

A GEFAHR

Gefährliche Körperströme

Legen Sie das Motorgehäuse auf Maschinenerde oder

verbinden Sie den Erdanschluss des Motorsteckers mit dem zentralen Erdungspunkt der Maschine.

→ Für die Schirmung beachten Sie Folgendes: Verwenden Sie generell abgeschirmte Motorkabel.

ACHTUNG

Störende Masseschleifen

Durch unsachgemäßen Anschluss von Schutzleiterverbindungen in Motorkabeln können störende Masseschleifen und Funktionsausfälle des Motors auftreten.

- Durch die beschriebenen Maßnahmen werden störende Masseschleifen vermieden.
- → Sollte sich dies als unpraktisch erweisen, verzichten Sie auf die Schutzleiterverbindung in den Motorkabeln und verlegen Sie eine separate Schutzleiterverbindung parallel zu den Motorkabeln.
- → Sorgen Sie stets dafür, dass das Kabel zum Antrieb zurückgeführt wird! Das Kabel darf mit keiner anderen Masseschleife verbunden werden.

Für die Motoren ist eine abgeschirmte Leitung auszuwählen, um Störungen so gering wie möglich zu halten.

Der Kabelschirm muss großflächig über 360° angeschlossen werden. Zudem sollte das Motorkabel möglichst kurz sein, um die elektromagnetische Störaussendung und kapazitive Ströme zu reduzieren.

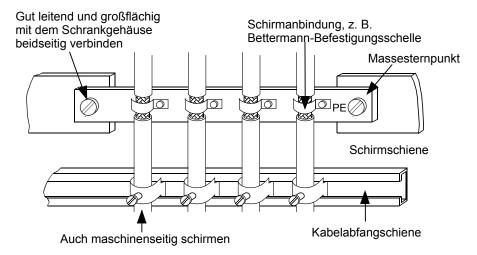


Abb. 102: Anschluss von Motoren

Anforderungen an das Motorkabel

Die maximal zulässige Länge des Motorkabels ist auf 100 m beschränkt und darf eine Kapazität von 5,2 nF nicht überschreiten.

Beispiel: Bei einer Kabelkapazität von 0,26 nF pro Meter ergibt sich eine maximale Länge der Motorleitung von 20 m.

11.2.2 Kommunikationskabel

Bitte verwenden Sie in Ihrem eigenen Interesse nur hochwertige, den Normen entsprechende Kabel für die Verdrahtung der Kommunikationsschnittstellen.

ACHTUNG

Ungeerdete Testaufbauten

→ Sogenannte "fliegende Testaufbauten", die nicht oder nicht ausreichend geerdet sind, können zur Zerstörung Ihrer Kommunikationsschnittstellen bzw. angeschlossener Geräte führen.

USB

Das USB-Kabel sollte, entsprechend der USB-Vorgabe, maximal 5 m lang sein. Wir empfehlen die Verwendung von hochwertigen USB-Kabeln mit integriertem Ferritkern (erhältlich bei SIEB & MEYER).

Hinweis

Eine fehlerfreie USB-Kommunikation ist auch stark abhängig von der Qualität der USB-Schnittstelle des verwendete PCs/Laptops.

RJ45

Verwenden Sie hochwertige RJ45-Kabel.

Günstige RJ45-Kabel können zu Beschädigungen an den RJ45-Buchsen führen. Häufig weichen die Abmessungen der Kabelstecker von den Standardmaßen ab und verursachen schon nach wenigen Steckzyklen Kontaktprobleme.

11.2.3 Kabel für die Rotorlageerkennung

Für die Verdrahtung der verschiedenen Messsysteme ist eine abgeschirmte Leitung mit abgeschirmtem D-Sub-Gehäuse zu verwenden. Der Kabelschirm muss beidseitig aufgelegt werden: Auf der Antriebsseite legen Sie den Schirm auf das D-Sub-Gehäuse und auf der Motorseite legen Sie den Schirm auf das Gehäuse des Messsystems.

Beispiele für die Verwendung von Leitungen:

Motoren mit Resolver

LIYCY 3 x 2 x 0,14 bzw. 4 x 2 x 0,14 für Motoren mit integriertem Thermokontakt. Abgeschirmte, paarig verdrillte Leitung. Drillmodus: Sinus/Sinus, Cosinus/Cosinus, Rotor/Rotor und ggf. Thermokontakt/Thermokontakt.

Für kritische Anwendungen empfehlen wir eine zusätzliche Abschirmung der einzelnen Paare.

Motoren mit Inkrementalgeber

LIYCY 5 x 0,14 bzw. 7 x 0,14 für Motoren mit integriertem Thermokontakt.

Motoren mit Hallsensoren und Tachogenerator LIYCY 9 x 0,14 bzw. 12 x 0,14 für Motoren mit integriertem Thermokontakt.

11.2.4 Leitungen für den externen Ballastwiderstand

Die Leitungen zum externen Ballastwiderstand von R_{EX} und +UB sollten verdrillt sein. Ein abgeschirmtes Kabel ist zu verwenden, wenn die Leitung länger als 20 cm ist.

12 Elektrische Leistungsauslegung

Im Zusammenhang mit der Auswahl der Endstufen und Netzteile bei der Auslegung eines Antriebs treten erfahrungsgemäß immer wieder Fragen auf. Dieses Kapitel soll die physikalischen Hintergründe verdeutlichen und damit eine Hilfestellung geben, die Elektronik richtig zu dimensionieren.

12.1 Komponenten

Im folgenden wird die elektrische Leistungsauslegung der einzelnen Antriebskomponenten (Endstufe, Netzteil, Motor) beschrieben.

12.1.1 Endstufe

Die Endstufe eines Antriebsverstärkers wird durch folgende Angaben spezifiziert:

Spannungsklasse

Die maximale Zwischenkreisspannung wird durch die verwendeten Transistoren und Kondensatoren und die minimalen Abstände zwischen den Leiterbahnen begrenzt.

Bei einer Endstufe mit einer maximal zulässigen Zwischenkreisspannung von 325 V_{DC} (Klasse C), d. h. einer AC-Einspeisung von 230 V_{AC} , haben die Bauteile eine Spannungsfestigkeit von 600 V_{DC} . Diese Reserve ist erforderlich um einer Zerstörung bei Spannungsspitzen und der bei Bremsbetrieb höheren Zwischenkreisspannung vorzubeugen.

Stromklasse

Die Stromklasse definiert die max. zulässigen Ströme. Hierbei unterscheidet man Spitzen- und Nennstrom:

- ▶ Der **Spitzenstrom** ist nur für eine kurze Zeit (meistens 5 Sekunden) zulässig und hängt von den verwendeten Transistoren und deren Anzahl ab.
- Der Nennstrom kann von der Endstufe auf Dauer zur Verfügung gestellt werden. Seine Größe hängt von der Kühlung der Transistoren, d. h. der Größe des verwendeten Kühlkörpers und dessen Belüftung ab.
- ▶ Aufgrund einer höheren Belastung der Leistungshalbleiter in der Endstufe bei stehendem Drehfeld oder niedrigen Drehfeldfrequenzen (f ≤ 5 Hz), wird bei SIEB & MEYER-Geräten der Baureihen SD2, SD2S und SD2T der Nennstrom in diesem Frequenzbereich um den Faktor √2 reduziert.

12.1.2 Netzteil

Das Netzteil wird durch folgende Angaben spezifiziert:

Spannungsklasse

Die maximale Speisespannung wird durch die verwendeten Transistoren, Dioden und Kondensatoren und die minimalen Abstände zwischen den Leiterbahnen begrenzt.

Elektrische Leistungsauslegung

Stromklasse

Die Stromklasse definiert die max. zulässigen Ströme. Hierbei unterscheidet man Spitzen- und Nennstrom:

- ▶ Der **Spitzenstrom** ist nur für eine kurze Zeit (meist 1 Sekunde) zulässig und hängt von den verwendeten Dioden und deren Anzahl ab.
- ▶ Der **Nennstrom** kann von dem Netzteil auf Dauer zur Verfügung gestellt werden. Seine Größe hängt von der Kühlung der Dioden, d. h. der Größe des verwendeten Kühlkörpers und dessen Belüftung ab.

Leistung

In der Praxis wird bei Netzteilen eine max. Dauerleistung angegeben, da die Speisespannung als konstant angesehen wird. Da die Limitierung im Netzteil durch die Tragfähigkeit der Dioden bestimmt wird, hängt die max. Dauerleistung von der Speisespannung und der Art der Einspeisung ab.

Beispiele:

- ► Einspeisung 230 V_{AC}, 2 Phasen, max. Diodendauerstrom 6 A 230 V_{AC} × 2 × 6 A = 2,76 kW
- Einspeisung 400 V_{AC}, 3 Phasen, max. Diodendauerstrom 6 A 400 V_{AC} × 3 × 6 A = 7,20 kW

Der maximale Spitzenstrom ist abhängig von der Bauart der Dioden.

Die Absicherung wird wie folgt errechnet:

$$\frac{\text{Leistung}}{\text{Einspeisespannung}} = \frac{2,76 \text{ kW}}{230 \text{ V}_{AC}} = 12 \text{ A}_{\text{eff}}$$

12.1.3 Motor

Der Motor wird unter anderem durch folgende Angaben spezifiziert:

Spitzenstrom

Der Spitzenstrom legt den max. zulässigen Motorstrom fest. Der Spitzenstrom ist nur für eine kurze Zeit (zwischen 1 und 30 Sekunden) zulässig und hängt von den verwendeten Magnetmaterialien und der Dicke des Wicklungsdrahts ab. Der Motorhersteller gibt in der Regel einen Spitzenstrom bei Stillstand und bei drehendem Feld an. Die Angaben im Motordatenblatt sind in der Regel Effektivangaben. Bei SIEB & MEYER werden die Ströme als Sinusscheitelwerte angegeben.

Um auf die Effektivwerte zu kommen, muss dieser Wert durch √2 dividiert werden.

Nennstrom

Der Nennstrom kann dem Motor auf Dauer eingeprägt werden. Seine Größe hängt von der Kühlung des Motors, der Wicklungen und der max. zulässigen Motortemperatur ab. Der Motorhersteller gibt in der Regel einen Nennstrom bei Stillstand und bei drehendem Feld an. Die Angaben im Motordatenblatt sind in der Regel Effektivangaben. Bei SIEB & MEYER werden die Ströme als Sinusscheitelwerte angegeben.

Um auf die Effektivwerte zu kommen, muss dieser Wert durch √2 dividiert werden.

In der aktuellen Version der Software drivemaster2 gibt es die Möglichkeit, zwischen Effektivwert und Sinusscheitelwert umzuschalten (siehe "Einstellungen → Programmeinstellungen → Darstellung"). Bei Umschaltung werden die vorhandenen Werte automatisch in die neue Einheit umgerechnet. Die Default-Einstellung ist der Effektivwert.

Motorspannung

Die Motorspannung ist die direkt am Motor zur Verfügung stehende Spannung. Die Höhe der Motorspannung hängt von den eingesetzten elektrischen Komponenten ab. Bei einer dreiphasigen Netzeinspeisung mit Netzdrossel, einem geregeltem Antriebsverstärker und einer Motordrossel fallen jeweils 4 %, 8 % und 1 % der Netzspannung ab. An einem weichen Netz können zusätzlich Spannungsverluste von ca. 2 % registriert werden.

Beispiel

Im Beispiel wird bei einer Netzspannung von 400 V ein geregelter Antriebsverstärker mit einer Netzdrossel eingesetzt. Daraus resultiert folgende Motorspannung:

 U_{Motor} = 400 V - (400 V * 12 %) = 352 V

Spannungskonstante

Der Motor erzeugt im Betrieb durch die ihm zugrundeliegende Induktivität eine Gegenspannung, die der zur Verfügung stehenden Spannung entgegengesetzt ist. Diese Spannung ist zu der Drehzahl proportional und wird in 'Volt pro 1000 Umdrehungen' angegeben. Die Angaben sind in der Regel Effektivangaben und werden zwischen den Anschlussklemmen gemessen.

Beispiel

Zwischenkreisspannung: 325 V

► EmK: 1000 mV/min

Zur Ansteuerung des Motors stehen bei 1000 1/min nur noch 225 V zur Verfügung. Der Motor hat eine theoretische max. Drehzahl von 3250 1/min. Bei dieser Drehzahl steht kein Drehmoment mehr zur Verfügung, da kein Strom mehr eingeprägt werden kann.

Drehmomentkonstante

Die Drehmomentkonstante gibt die Beziehung zwischen Motorstrom und Motordrehmoment an (Nm/A). Die Drehmomentkonstante ist ein Ergebnis aus geforderter max. Drehzahl, Dynamik, Effektivität und der Güte des Magnetmaterials.

Induktiver Wicklungswiderstand

Der induktive Wicklungswiderstand (ωL) resultiert aus der Anzahl der Windungen der Wicklung. Im Stillstand ist er Null. Er erhöht sich mit der Frequenz.

Ohmscher Wicklungswiderstand

Der ohmsche Wicklungswiderstand R resultiert aus der Drahtlänge und Drahtstärke. Im Stillstand bestimmt er allein den Wicklungswiderstand.

Elektrische Zeitkonstante

Die elektrische Zeitkonstante ist der Quotient aus dem induktiven und dem ohmschen Widerstand ($\tau = L/R$).

Schraubmotoren

Schraubmotoren sind in der Regel hochdynamisch, haben eine hohe Spitzendrehzahl, ein hohes Spitzendrehmoment, eine geringe Massenträgheit und ein kleines Nennmoment. Hieraus resultiert eine kleine Spannungskonstante, eine kleine Induktivität, ein dünner Wicklungsdraht und ein geringer Rotordurchmesser. Aufgrund der kleinen Induktivität wird ein Schraubmotor mit einer hohen Pulsweitenmodulatorfrequenz (PWM-Frequenz 16 kHz) betrieben, um den Stromrippel klein zu halten.

12.2 Leistungsaufnahme eines Antriebs

Wird dem Antrieb ein konstantes Drehmoment entnommen, ist die Leistungsaufnahme abhängig von der momentanen Drehzahl.

Beispiele:

Vorgegebenes Drehmoment: 30 Nm

Zwischenkreisspannung: 300 V

► Spannungskonstante: 50 mV / min (50 V / 1000 1/min)

Wicklungswiderstand: 1 Ω

Drehmomentkonstante: 1 Nm / A

Hieraus ergibt sich ein Motorstrom von:

$$I = \frac{30 \,\text{Nm}}{1 \,\text{Nm} \, / \,\text{A}} = 30 \,\text{A}$$

Der Motor benötigt hierfür eine Spannung von U = 1 Ω × 30 A = 30 V

0 1/min, Stillstand

Daraus ergibt sich eine Leistung von P = $30 \text{ V} \times 30 \text{ A} = 0.9 \text{ kW}$.

Bei einer Zwischenkreisspannung von 300 V ergibt sich ein Eingangsstrom aus der Versorgungsspannung von I = P / 300 V = 3 A.

Im Netzteil fließt also ein weit geringerer Strom als im Motor. Diese Betrachtung ist gerade bei Schraubanwendungen von großer Bedeutung, da die hohen Drehmomente und damit Ströme nur bei niedrigen Drehzahlen benötigt werden.

2000 1/min

Bei 2000 1/min benötigt der Motor hierfür eine Spannung von U = R × I + EmK × n = $1 \Omega \times 30 \text{ A} + 50 \text{ V} / (1000 \text{ 1/min}) \times (2000 \text{ 1/min}) = 130 \text{ V}.$

Daraus ergibt sich eine Leistung von P = 130 V × 30 A = 3,9 kW.

Bei einer Zwischenkreisspannung von 300 V ergibt sich ein Eingangsstrom aus der Versorgungsspannung von I = P / 300 V = 13 A.

Im Netzteil fließt also bei 2000 1/min ein wesentlich größerer Strom als im Stillstand.

5400 1/min

Bei 5400 1/min benötigt der Motor hierfür eine Spannung von U = R × I + EmK × n = $1 \Omega \times 30 \text{ A} + 50 \text{ V} / (1000 \text{ 1/min}) \times (5400 \text{ 1/min}) = 300 \text{ V}.$

Daraus ergibt sich eine Leistung von P = 300 V × 30 A = 9 kW.

Bei einer Zwischenkreisspannung von 300 V ergibt sich ein Eingangsstrom aus der Versorgungsspannung von I = P / 300 V = 30 A.

Im Netzteil fließt also bei 5400 1/min derselbe Strom wie im Motor. Hierbei ist zu beachten, das die in den Motorphasen fließenden Ströme um der Faktor $\sqrt{3}$ kleiner als die oben berechneten sind.

Anhand der Beispiele ist deutlich zu erkennen, dass das zu erwartende Bewegungsprofil bei der Dimensionierung des Powermoduls zu beachten ist. Eine genaue Auslegung ist nur durch Integration des Bewegungsprofils möglich.

Dies gilt in gleicher Weise für die Auslegung der Endstufe und des Motors.

13 Sicherheitsschaltung / Anlaufsperre (STO)

entsprechend EN ISO 13849-1:2008-12, DIN EN 62061:2005 SIL 3

Die Anlaufsperre dient dazu, einen unerwarteten Anlauf eines drehzahlveränderbaren Antriebs aus dem Stillstand zu verhindern und kann z. B. in der Maschinenfunktion "Sicherer Halt" verwendet werden. Die Stopp-Funktion setzt den Antrieb im Normalbetrieb still.

SIEB & MEYER-Antriebe verfügen über eine Anlaufsperre geprüft nach EN ISO 13849-1 und eine Stoppfunktion nach DIN EN 60204-1, Stopp-Kategorie 0 (siehe Stopp-Kategorien unten). Eine Stopp-Kategorie 1 kann erlangt werden, wenn ein geprüftes sicheres Not-Aus-Schaltgerät mit Verzögerung oder eine sichere SPS nach DIN EN 60204-1 verwendet wird.

Die Stopp-Funktionen werden durch die DIN EN 60204-1 (VDE 0113-1) Absatz 9.2.1 und 9.2.2.3, definiert. Es gibt die folgenden Kategorien von Stopp-Funktionen:

- **Kategorie 0** Stillsetzen durch sofortiges Ausschalten der Energiezufuhr zu den Maschinen-Antriebselementen. Hierbei handelt es sich um ein ungesteuertes Stillsetzen.
- **Kategorie 1** Ein gesteuertes Stillsetzen, bei dem die Energiezufuhr zu den Maschinen-Antriebselementen beibehalten wird, um das Stillsetzen zu erzielen. Die Energiezufuhr wird erst dann unterbrochen, wenn der Stillstand erreicht ist.
- Kategorie 1b Ein gesteuertes Stillsetzen, bei dem die Energiezufuhr zu den Maschinen-Antriebselementen beibehalten wird, um das Stillsetzen zu erzielen. Die Aufrechterhaltung
 der Stoppbedingung wird überwacht. Sollte die Stoppbedingung wegfallen, wird die
 Energiezufuhr unterbrochen, ohne dabei eine gefahrbringende Situation zu erzeugen.
 - **Kategorie 2** Ein gesteuertes Stillsetzen, bei dem die Energiezufuhr zu den Maschinen-Antriebselementen erhalten bleibt.

Jede Maschine muss mit einer Stopp-Funktion der Kategorie 0 ausgerüstet sein. Stopp-Funktionen der Kategorie 1 und/oder 2 sind dann vorzusehen, wenn dies für die sicherheits- und/oder funktionstechnischen Erfordernisse der Maschine notwendig ist.

Die Nachteile der Abschaltung über elektromechanische Elemente lassen sich durch den konsequenten Einsatz elektronischer Elemente eliminieren. Die Norm DIN EN 60204-1 "Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen" erlaubt auch für das Stillsetzen im Notfall den Einsatz von elektronischen Betriebsmitteln, sofern diese unter Anwendung der Normen EN ISO 13849-1 und/oder der DIN EN 62061 die gleiche Sicherheit erfüllen, wie nach DIN EN 60204-1 gefordert.

Diese geprüfte Sicherheitsschaltung wurde basierend auf dem Konzeptpapier der Drivecom "Technische Leitlinie für Sicherheitsgerichtete Antriebe" vom 23.04.2004 entwickelt. Das Konzeptpapier wurde von der BIA und dem TÜV Rheinland geprüft, und die Erfüllung der zugrunde gelegten Normen und Prüfgrundlagen wurde bestätigt.

Der Stillstand der Maschine muss vor der Stillsetzung des Antriebs über eine externe übergeordnete Maschinensteuerung herbeigeführt werden, und die Stopp-Funktion der Kategorie 2 muss mindestens sichergestellt sein.

Mit der Anlaufsperre wird die Energiezufuhr vom Antrieb zum Motor unterbrochen, indem die Versorgung der Endstufenansteuerung abgeschaltet wird und somit eine Drehbewegung des Motors unmöglich ist.

Diese Schaltung hat den Vorteil, dass in einer Anlage mit mehreren Antrieben ein einzelner Antrieb sicher gesperrt werden kann, während die anderen Antriebe in Betrieb bleiben können. Zudem kann ein Antrieb gesperrt werden, ohne dass bei erneuter Inbetriebnahme der Zwischenkreis neu aufgeladen werden muss.

A GEFAHR

Gefahr durch elektrischen Schlag

Eine galvanische Trennung der Endstufen vom Motor erfolgt durch die Anlaufsperre nicht. Sie ist somit keine Schutzfunktion gegen elektrischen Schlag.

→ Für Betriebsunterbrechungen, Wartungs-, Instandsetzungs- und Reinigungsarbeiten an der Maschine bzw. Anlage muss die komplette Maschine grundsätzlich über den Hauptschalter galvanisch vom Netz getrennt werden (DIN EN 60204-1 5.3).

Hinweis

Alle Einbauräume für sicherheitsbezogene Bauteile des Steuerungssystems sowie außerhalb verlegte Teile müssen, wenn sie vorschriftsmäßig montiert sind, einer Schutzart IP54 entsprechen.

13.1 Funktionsweise der Anlaufsperre

Die Anlaufsperre sperrt den jeweiligen Antrieb einer Anlage. Alle weiteren Antriebsmodule (Servoverstärker/Frequenzumrichter) bleiben funktionstüchtig.

An dem zu sperrenden Antrieb greift eine TÜV-geprüfte Sicherheitsschaltung auf die entsprechenden Ansteuerungen der Endstufentransistoren zu, indem sie die Spannungsversorgung der Ansteuerungen unterbricht. Dadurch können keine Ansteuerimpulse zu den Endstufentransistoren geleitet werden und der Motor ist in einem sicheren Halt.

OSSD (Output Signal Switching Device)

Definition: Teil der berührungslos wirkenden Schutzeinrichtung (BWS), der mit der Maschinensteuerung verbunden ist und der in den AUS-Zustand übergeht, wenn der Sensorteil während des bestimmungsgemäßen Betriebs anspricht (Quelle IEC 61496-1).

Das OSSD-Signal ist ein gepulstes Signal, dessen Phasenlage in den einzelnen Kanälen verschoben ist. Durch die Kontrolle der Impulsmuster lassen sich alle Fehler erkennen, Kurzschluss zur Versorgung, Querschluss oder Defekt des Gerätes. Hiermit wird ein sehr hoher Sicherheitslevel (SIL 4) erreicht.

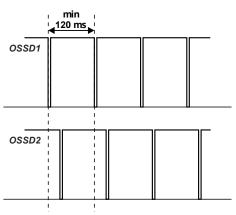
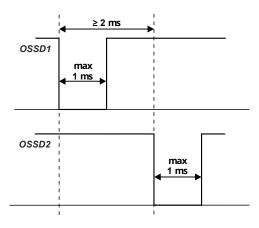



Abb. 103: OSSD-Signale

OSSD Testimpuls breite

Mit dem OSSD1+2-Signal, oder über ein oder mehrere Not-Halt-Schaltgeräte, wird die Sicherheitsschaltung angesteuert, siehe auch <u>Kapitel 13.2 "Beispielverdrahtung"</u>, Seite 175.

Fallen die OSSD-Signale oder mindestens eine der +24-V-Leitungen aus, so schaltet die Sicherheitsschaltung die Impulsmuster der Ansteuerung der Endstufensektoren ab. Die Reaktionszeit der Anlaufsperre beträgt **max. 4 ms**.

Die Anlaufsperre darf erst angesteuert werden, wenn

- ▶ der Antrieb in einem sicheren Halt ist (Stopp-Kategorie 2),
- die übergeordnete Steuerung das Antriebsmodul deaktiviert hat,
- ► (Drehzahlsollwert 0)
- die Motorhaltebremse arretiert ist.

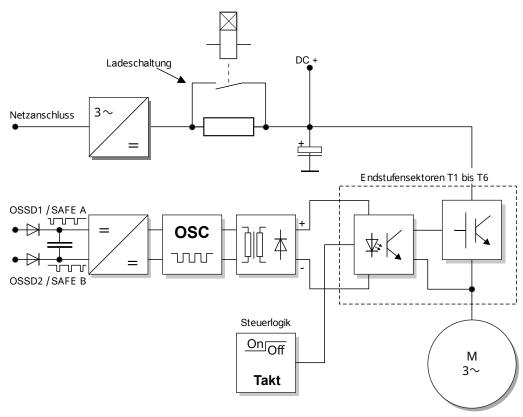


Abb. 104: Steuerung der Sicherheitsschaltung

A GEFAHR

Kein Drehmoment bei aktivierter Anlaufsperre

Der Motor kann bei aktivierter Anlaufsperre kein Drehmoment mehr aufbringen. Dadurch können sich nicht selbsthemmende Antriebe lösen.

→ Nicht selbsthemmende Antriebe wie hängende Lasten müssen über eine mechanische Bremse blockiert werden.

13.2 Beispielverdrahtung

Durch die Kombination eines sicheren Not-Halt-Befehlsgerätes mit einem OSSD-Sicherheitsschaltgerät oder einem Lichtvorhang mit OSSD-Ausgängen und der sicheren Abschaltung der Impulsmuster lässt sich eine Schaltung mit Fehlererkennung zusammenstellen, die einen sicheren Halt (nach Stopp-Funktion Kategorie 0+1) erreicht

entsprechend der Sicherheitsanforderungen nach SIL 3 (EN ISO 13849-1). Bei dieser Schaltung können mehrere sichere Not-Halt-Schaltgeräte in Reihe geschaltet werden, die ständig überprüft werden.

Beschaltung mit OSSD (SIL 3)

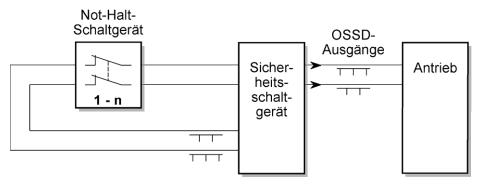


Abb. 105: Beschaltung mit OSSD

Beschaltung ohne OSSD (SIL 3)

Das folgende Bild zeigt einen Aufbau ohne OSSD-Sicherheitsschaltgerät, wobei nur sicherheitsgerichtete Befehlsgeräte in zweikanaliger Ausführung mit zwangsöffnenden Kontakten Verwendung finden. Hier wird der SIL 3 (nach EN ISO 13849-1) erreicht. Es können auch mehrere verschiedene sichere Not-Halt-Befehlsgeräte, Positionsschalter oder Türverriegelungen zu einem Sicherheitskreis kaskadiert werden.

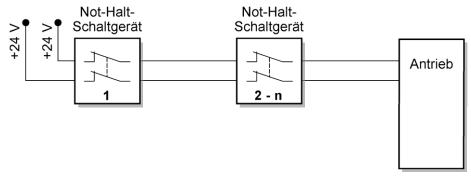


Abb. 106: Beschaltung ohne OSSD

Hinweis

Um den Sicherheitslevel SIL 3 nach EN ISO 13849-1 zu erlangen, müssen sowohl das Sicherheitsschaltgerät als auch das Not-Halt-Schaltgerät mit mindestens SIL 3 zertifizierte Sicherheitsschaltgeräte sein.

Hinweis

Um den Sicherheitslevel SIL 3 nach EN ISO 13849-1 zu erlangen, wurden die Schaltung und das Layout nach IEC 60664-1:2008-01 bemessen. Es wurde Basismaterial nach IEC 60249 sowie eine alterungsbeständige Lack- und Schutzschicht nach IEC 60664-3:2003-09 verwendet. Die Normenkonformität wurde vom TÜV-Nord CERT geprüft und nachgewiesen.

13.3 Anforderungen der Normen

Folgende Kenngrößen werden im Rahmen des Sicherheitsnachweises geleistet:

- ▶ gemäß EN ISO 13849-1:2008-12
 - MTTFd: >100 Jahre
 - DC = 99%
 - Kategorie 4
 - Performance Level e
- gemäß EN 61508-1:2010 und EN 61800-5-2:2014-06
 - PFH = 0
 - SFF = 100 % (wenn PFH Werte, dann SFF<100%)
 - HFT = 0

Das Sicherheitskonzept K1 erfüllt die Anforderungen an SIL 3 nach oben genannten Normen.

Anforderungen nach DIN EN 61800-5-2:2014-06

Das Sicherheitskonzept K1 liefert bei entsprechender Beschaltung keinen Anteil gefährlicher, unerkannter Fehler in einer Sicherheitskette für die Funktion STO.

Damit lässt sich gemäß DIN EN 60204-1 die Stoppfunktion Kategorie 0+1 realisieren.

13.4 Ablauf der Anlaufsperre

Das folgende Schaubild stellt den Vorgang der Anlaufsperre einschließlich der vom Anwender erforderlichen Aktionen mittels einer Zeitachse dar.

Verhalten STO

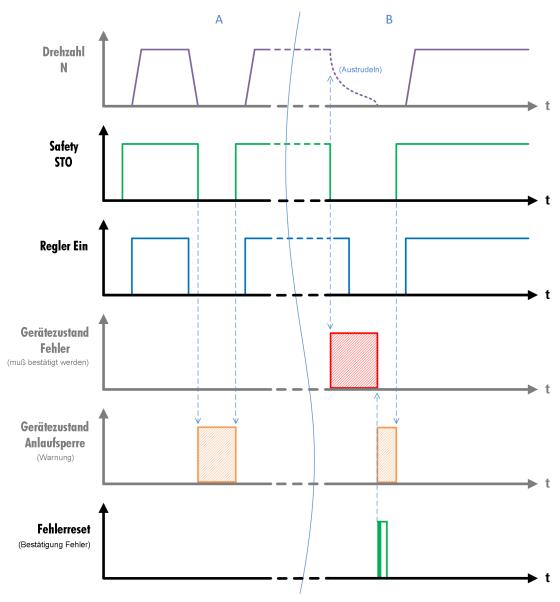


Abb. 107: Verhalten STO/Anlaufsperre - Zeitablauf und erforderliche Aktionen

- **Fall A** Wird ein STO-Kontakt bei "Regler Aus" unterbrochen, so wird nur der Gerätezustand "Einschaltsperre" ausgelöst. Sobald STO wieder anliegt, kann mit dem nächsten "Regler Ein" weitergearbeitet werden.
- **Fall B** Wird ein STO-Kontakt bei "Regler Ein" unterbrochen, so wird der Gerätezustand "Fehler" ausgelöst. Dieser muss immer mit einem Fehlerreset bestätigt werden, um weiterarbeiten zu können.

14 Anhang

A Spezifikationen der Antriebsfunktionen

Die Geräte der Serie SD2S lassen sich über das Laden bestimmter Antriebssoftware in verschiedene Antriebsfunktionen setzen, die verschiedene Motoren und Messsysteme unterstützen.

Hinweis

Die verfügbaren Antriebsfunktionen sind abhängig vom verwendeten Gerätetyp und der Geräteversion.

SERVO / VECTOR

Für lineare und rotative Synchron- und Asynchronmotoren:

- mittlere Drehzahlen/Geschwindigkeiten (< 120.000 1/min)
- hochauflösende Messsysteme
- leistungsfähige Geschwindigkeits-/Drehzahlregelung
- Regelung auch bei niedrigen Geschwindigkeiten und im Stillstand
- Besonderheit SVC (sensorlose Vektorregelung): sensorloser Betrieb (bis 120.000 1/min)
- ► **HSPWM** (high-speed Pulsweitenmodulation)

Für rotative Synchron- und Asynchronmotoren:

- hohe Drehzahlen (bis 480.000 1/min)
- geringe Verluste im Antrieb
- sensorloser Betrieb
 - (Optional kann ein Messsystem für die Drehzahlüberwachung eingesetzt werden, um die Zustände "Drehzahl Null" und "Sollwert erreicht" zu melden.)
- HSBLOCK / FPAM (high-speed Blockkommutierung / Fluss-Pulsamplitudenmodulation)

Für rotative Synchronmotoren:

- Betrieb mit Hall-Sensoren oder sensorloser Betrieb
- Hall-Sensoren: mittlere Drehzahlen (bis 360.000 1/min) sensorlos: hohe Drehzahlen (bis 480.000 1/min)
- leistungsfähige Drehzahlregelung
- HSPAM / UF (high-speed Pulsamplitudenmodulation / U/f-Steuerung)

Für rotative Asynchronmotoren:

- U/f-PWM für Geräte mit fester Zwischenkreisspannung
- HSPAM (U/f-PAM) für Geräte mit geregelter Zwischenkreisspannung
- PWM: mittlere Drehzahlen (bis 120.000 1/min)
- PAM: hohe Drehzahlen (bis 480.000 1/min)
- U/f-Kennlinie f
 ür Asynchronmotoren
- einfache Parametrierung und unproblematischer Betrieb des Motors
- sensorloser Betrieb
 - (Optional kann ein Messsystem für die Drehzahlüberwachung eingesetzt werden, um die Zustände "Drehzahl Null" und "Sollwert erreicht" zu melden.)

Die folgende Grafik zeigt die Drehzahlbereiche der einzelnen Antriebsfunktionen:

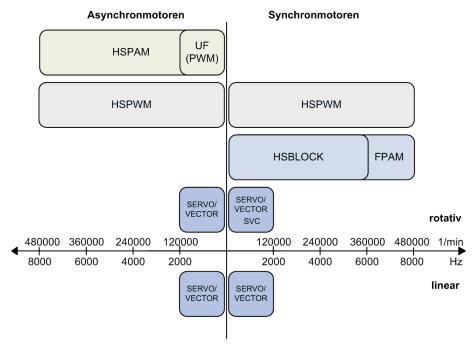


Abb. 108: Drehzahlbereiche der Antriebsfunktionen eines SD2S

Motor

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Motoren	 Synchron rotativ Asynchron rotativ Synchron linear Voice Coil Bis 2000 Hz Drehfeldfrequenz 	 ▶ Synchron rotativ ▶ Asynchron rotativ ▶ Bis 8000 Hz Drehfeldfrequenz bei 320 V_{DC} ▶ Bis 5333 Hz Drehfeldfrequenz bei 560 V_{DC} 	HSBLOCK ► Synchron rotativ ► Bis 6000 Hz Drehfeldfrequenz	U/f-PAM ► Asynchron rotativ ► Bis 8000 Hz Drehfeldfrequenz
	SVC:		FPAM	U/f-PWM
	Synchron rotativBis 2000 Hz Drehfeldfrequenz		Synchron rotativBis 8000 Hz Drehfeldfrequenz	Asynchron rotativBis 2000 Hz Drehfeldfrequenz

Software

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Softwarepakete ⁽¹⁾	L04001Vxxxxx & F04001Vxxxxx Sonderfunktion: En- Dat 2.1	L0400 2 Vxxxxx & F0400 4 Vxxxxx	L04003Vxxxxx & F04007Vxxxxx Sonderfunktion: Hall- Messsystem	L09005Vxxxxx & F09005Vxxxxx
	L04001Vxxxxx & F04003Vxxxxx Sonderfunktion: Hiperface	L04002Vxxxxx & F04013Vxxxxx In (inklusive U/f)	L09003Vxxxxx & F09007Vxxxxx Sonderfunktion: sensorlos	L04002Vxxxxx & F04013Vxxxxx ► (inklusive HSPWM)
	L04001Vxxxxx & F04006Vxxxxx Sonderfunktion: Elektronisches Getriebe			L04002Vxxxxx & F04012Vxxxxx ► (inklusive SVC)
	L04002Vxxxxx & F04012Vxxxxx Sonderfunktion: SVC (inklusive U/f)			

Spezifikationen der Antriebsfunktionen

⁽¹⁾ SD2S-Softwarepakete sind nach der Firmware- oder Logikerkennung an der '4' oder '9' (Geräte mit geregelter Zwischenkreisspannung) in der Softwarebezeichnung erkennbar, (z. B. Logiksoftware = Lx4xxx, Firmware = Fx4xxx).

Messsystem

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Messsysteme	L04001 / F04001 ► Resolver (bis 666 Hz) ► Inkrementalgeber TTL mit Setzen (5 V / max. 2,5 MHz ⁽¹⁾) ► Sinus-Cosinus-Geber mit Setzen (1 V _{ss} / max. 230 kHz ⁽¹⁾) ► Sinus-Cosinus-Geber mit EnDat 2.1 (1 V _{ss} / max. 230 kHz ⁽¹⁾) ► linearer Hall-Geber	L04002 / F04004 Sensorlos Hall-Sensor (12 V) Sinus-Cosinus-Geber (1 V _{ss} / max. 230 kHz ⁽¹⁾) Feldplatte 2-Draht Feldplatte 3-Draht Impulsgeber NAMUR Impulsgeber Hall A Impulsgeber 24 V Impulsgeber 5 V Digitale Feldplatte / GMR	L04003 / F04007 ► Hall-Sensor (12 V) ► Hall-Sensor (5 V)	L09005 / F09005 Sensorlos Sinus-Cosinus-Geber (1 V _{ss} / max. 230 kHz ⁽¹⁾) Feldplatte 2-Draht Feldplatte 3-Draht Impulsgeber NAMUR Impulsgeber Hall A Impulsgeber 5 V
	L04001 / F04003 ► Resolver (bis 666 Hz) ► Inkrementalgeber TTL mit Setzen (5 V / max. 2,5 MHz ⁽¹⁾) ► Sinus-Cosinus-Geber mit Setzen (1 V _{ss} / max. 230 kHz ⁽¹⁾) ► Sinus-Cosinus-Geber mit Hiperface (1 V _{ss} / max. 230 kHz ⁽¹⁾) ► Innearer Hall-Geber	L04002 / F04013 Sensorlos Feldplatte 2-Draht Feldplatte 3-Draht Impulsgeber NA-MUR Impulsgeber 24 V Impulsgeber 5 V digitale Feldplatte / GMR	L04003 / F09007 ► EMK-Messung ► Hall-Sensor (12 V) ► Hall-Sensor (5 V)	L04002 / F04013 Sensorlos Feldplatte 2-Draht Feldplatte 3-Draht Impulsgeber NA-MUR Impulsgeber 24 V Impulsgeber 5 V digitale Feldplatte / GMR
	L04001 / F04006 ► Resolver (bis 666 Hz) ► Inkrementalgeber TTL mit Setzen (5 V / max. 2,5 MHz ⁽¹⁾) ► Sinus-Cosinus-Geber mit Setzen (1 V _{ss} / max. 230 kHz ⁽¹⁾) ► Linearer Hall-Geber L04002 / F04012			L04002 / F04012 Sensorlos Feldplatte 2-Draht Feldplatte 3-Draht Impulsgeber NA-MUR Impulsgeber 24 V Impulsgeber 5 V digitale Feldplatte / GMR
	Sensorlose Vektor- regelung (SVC)			

⁽¹⁾ Angabe gilt pro Spur.

Spezifikationen der Antriebsfunktionen

Betriebsart

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Betriebsarten	 Geschwindigkeitsmodus Stromsollwert Profile Velocity Mode Interpolierte Lageregelung Elektronisches Getriebe 	► Geschwindigkeitsmodus	► Geschwindigkeitsmodus	► Geschwindigkeitsmodus

Softwareverbindung

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Parametrierung mit Software <i>drivemas-</i> <i>ter2</i>	► USB-Verbindung► RS232-Verbindung► SERVOLINK 4 (nur Lic	chtleiter)		

Übertragungskanäle

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Steuerkanal	 Digitale Eingänge SERVOLINK 4 Serielle Schnittstelle / CAN-Bus DNC 8 Byte Telegramr 			
Sollwertkanal	 Analogeingänge SERVOLINK 4 CAN-Bus DNC 8 Byte Telegramm Serielle Schnittstelle / RS485 / USB Interne Sollwerte Encoder 0 (nur mit Softwarepaket L04001 / F04006) 	 ► Analogeingänge ► SERVOLINK 4 ► CAN-Bus ► DNC 8 Byte Telegrams ► Serielle Schnittstelle / ► Interne Sollwerte 		

Regelung

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF
Schaltfrequenz	8 / 16 kHz	8 / 16 / 32 / 64 / 128 kHz	8 ⁽¹⁾ / 16 / 32 / 64 ⁽¹⁾ kHz	8 / 16 kHz ⁽¹⁾
Volldigitale Strom- regelung	16 kHz	16 / 32 / 64 / 128 / 256 kHz	16 ⁽¹⁾ / 32 / 64 / 128 ⁽¹⁾ kHz	8 / 16 kHz ⁽¹⁾
Volldigitale Ge- schwindigkeitsre- gelung		16 kHz	(62,5 μs)	
Volldigitale Lagere- gelung	4 kHz (250 μs) ²		-	

⁽¹⁾ Nur bei Geräten mit festem Zwischenkreis.

⁽²⁾ Nur bei interpolierter Lageregelung und elektronischem Getriebe.

Schnittstellen

Antriebsfu	ınktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF					
Digitale Eir	ngänge	 9 Eingänge 24 V inklusive 1 Eingang (Latch-Funktion 250 kHz (4 μs) Abtastung) 12 – 24 V high / 0 – 5 V low Abtastung 4 kHz (250 μs) Funktion über Software konfigurierbar 								
Digitale Au	sgänge	 ► 5 Ausgänge 24 V (max. 100 mA pro Ausgang) ► Abtastung 4 kHz (250 μs) ► Funktion über Software konfigurierbar 								
Analoge Eingänge > 2 Differenzsignaleingänge > Arbeitsbereich ±10 V > maximaler Bereich ±12 V > Auflösung intern 14 Bit > Abtastung 4 kHz (250 µs) > Funktion über Software konfigurierbar										
Analoge A	usgänge	 2 Ausgänge Arbeitsbereich 0 – 10 \(\) maximaler Bereich 0 – Auflösung intern 14 Bit Abtastung 4 kHz (250) Funktion über Softward 	10 V : µs)							
Encoder	ENC0	 ► Eingang ► Signalform A Quad B, ► maximale Eingangsfre ► Pegel RS422 	Pulse/Direction, CW/CCW quenz 2,5 MHz pro Spur							
ENC1/ EMU als Eingang ► Signalform A Quad B ► Maximal Ein-/Ausgangsfrequenz 2,5 MHz pro Spur ► Pegel RS422										
		ENC1/EMU als Ausgang ► Signalform A Quad B / Impulsausgang ► Max. Ein-/Ausgangsfrequenz 2,5 MHz pro Spur ► Pegel RS422 (3,3 V)								

Überwachungen

Antriebsfunktion	SERVO / VECTOR	HSPWM	HSBLOCK / FPAM	HSPAM / UF					
Überwachungs- funktionen	MesssystemeLeistungsnetzteil: Aus								
		leüberwachung Überspar leüberwachung Unterspa	•						
	► Leistungsendstufe: Au	0 1	illiang						
	► Leistungsendstufe: Te	'							
	► Leistungsendstufe: Kı	,							
	 Leistungsendstufe: Si Motor: Auslastung (I²t 	J							
	► Motor: Temperatur (P	,							
	► Motor: Motorphase fehlt								
	► DC-Zwischenkreis: Ül	, ,							
	► DC-Zwischenkreis: Unterspannung								
	Ballastschaltung: AusUmgebungstemperatu	•							
	 Drehzahl: Fehler / Sch 								
	► Drehzahl: Überdrehzahl								
	► Lage: Schleppfehler (nur bei interpolierter Lage	eregelung und elektronisch	nem Getriebe)					

B Spezifikationen der Gerätefirmware

Die folgenden Firmwarevarianten sind für die Antriebsverstärker der Baureihe SD2S erhältlich.

Hinweis

Bitte beachten Sie, dass die aufgeführten Anschlüsse nicht in allen Gerätevarianten physikalisch zur Verfügung stehen.

B.1 Firmware für SD2S mit festem Zwischenkreis

Firmware SD2S mit festem Zwischenkreis (ohne Versionsnummer vxxxxx)	F04001 SERVO_STD	F04003 SERVO_HIPERFACE	F04004 HSPWM	F04006 SERVO_GEAR	F04007 HSBLOCK	F04012 UF_SVC	F04013 UF_HSPWM	F04017 UF_SVC_CAN	F04018 SERVO_ASYNCHRON	F04021 SERVO_ETHERCAT	F04022 SERVO_ASYNCHRON_CAN	F04024 UF_SVC_ETHERCAT	F04025 SERVO_ASYNCHRON_ETHERCAT
SERVO / VECTOR	1	1		1	1	1		1	1	✓	1	1	✓
Sensorlose Vektorregelung (SVC), synchron						1		1				1	
Resolver	1	1		1	1				1	1	1		1
Inkrementalgeber AB 5 V	1	1		1	1				1	1	1		1
Inkrementalgeber AB 12 V					1					1			
Sinus-Cosinus-Geber 1 V _{ss}	1	1		1					1	1	1		1
Linearer Hall-Geber 1 V _{ss}	1	1		1	1					1			
EnDat 2.1	1												
Hiperface		1											
HSPAM / UF, asynchron rotativ						1	1	1					
Sensorlos						1	1	1					
Feldplatte 2-Draht						1	1	1					
Feldplatte 3-Draht						1	1	1					
Impulsgeber NAMUR						1	1	1					
Impulsgeber 24 V						1	1	1					
Impulsgeber 5 V						1	1	1					
Digitale Feldplatte / GMR						1	1	1					
Fangen						1	1	1					
Stromgeführter Anlauf						1	1	✓					
HSBLOCK / FPAM, synchron rotativ					1								
Hall ABC 12 V					1								
Hall ABC 5 V					1								
Messung Phasenspannung													
HSPWM, synchron/asynchron rotativ			1				1						
Sensorlos			1				1						

Firmware SD2S mit festem Zwischenkreis (ohne Versionsnummer vxxxxx)	F04001 SERVO_STD	F04003 SERVO_HIPERFACE	F04004 HSPWM	F04006 SERVO_GEAR	F04007 HSBLOCK	F04012 UF_SVC	F04013 UF_HSPWM	F04017 UF_SVC_CAN	F04018 SERVO_ASYNCHRON	F04021 SERVO_ETHERCAT	F04022 SERVO_ASYNCHRON_CAN	F04024 UF_SVC_ETHERCAT	F04025 SERVO_ASYNCHRON_ETHERCAT
Feldplatte 2-Draht			1				1						
Feldplatte 3-Draht			1				1						
Impulsgeber NAMUR			1				1						
Impulsgeber 24 V			✓				✓						
Impulsgeber 5 V			1				1						
Digitale Feldplatte / GMR			1				1						
Hall ABC 12 V			1				1						
Hall A 12 V			1				1						
Sinus-Cosinus-Geber 1 V _{ss}			1				1						
Betriebsarten													
Stromregelung	1	1		1	1				1	1	1		1
Geschwindigkeitsmodus 1	1	1	1	1	1	1	1	1	1	1	1	1	1
Profile Velocity Mode	1	1		1									
Interpolierte Lageregelung	1	✓								✓			
Elektronisches Getriebe				✓									
Sollwert- und Steuerkanäle							,			,			
Analoge + digitale Eingänge	1	1	1	1	1	1	1	1	1	1	1	1	1
Serielle Schnittstelle / RS485 / USB	1	√	✓	✓	1	✓	1	✓	√	✓	✓	1	1
SERVOLINK 4	1	✓	✓		✓	✓	✓		✓				
CAN-Bus			✓	✓	1			1			√		
DNC 8 Byte			1	1	1	1	1	1	1		1	✓	✓
EtherCAT										1		1	1
Interne Sollwerte			✓		1	1	✓	✓	✓		✓	1	1
Motorpoti			1		1	✓	1	✓	1			1	
Encoder 0 / Pulse Direction-Eingang				1									
Encodernachbildung													
AB Quadratursignale	1	1		1	1				1	1	1		1
Drehzahlimpulse			1			1	✓	✓					
Sonstiges													
Multiparametersätze			✓		✓	✓	✓	✓	✓		✓	1	1
Wicklungserkennung						1		1				1	
Feldschwächung synchron						1		1	1	1	1	1	1
Stromgesteuerte Rampen ⁽¹⁾						1	1	1	1		1	1	1
Auswertung Differenzenmesssystem	1	1											

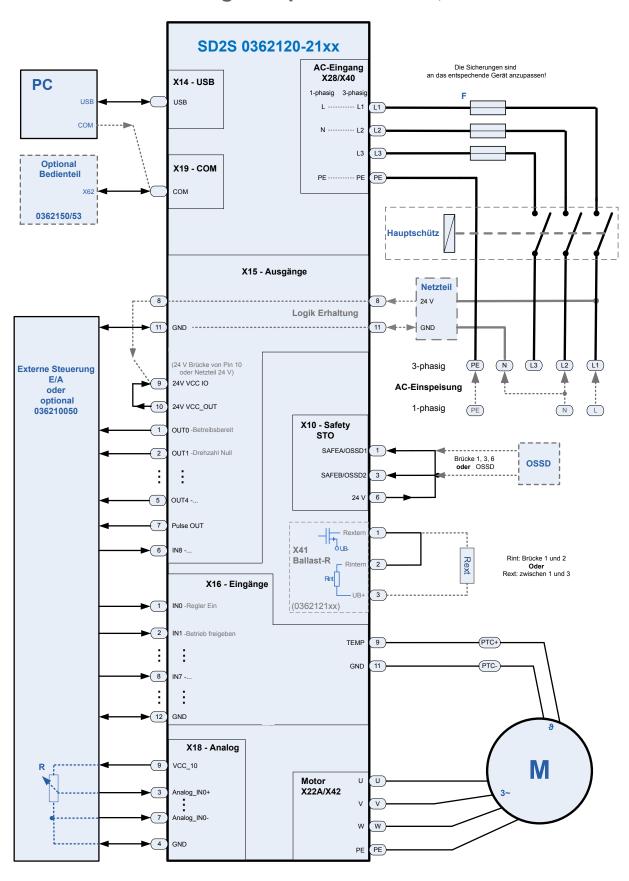
⁽¹⁾ Nicht bei Antriebsfunktion HSPWM verfügbar

B.2 Firmware für SD2S mit geregeltem Zwischenkreis

Firmware SD2S mit geregeltem Zwischenkreis (ohne Versionsnummer vxxxxx)	F09005 UF	F09006 SERVO_CAN	F09008 UF_SVC	F09009 UF_HSBLOCK_FPAM	F09010 UF_SVC_CAN	F09011 UF_HSBLOCK_FPAM_CAN	F09012 UF_HSBLOCK_FPAM_ETHERCAT
SERVO / VECTOR		1	1				
Sensorlose Vektorregelung (SVC), synchron			1		✓		
Resolver		1					
Inkrementalgeber AB 5 V		1					
Inkrementalgeber AB 12 V							
Sinus-Cosinus-Geber 1 V _{ss}		✓					
Linearer Hall-Geber 1 V _{ss}		1					
EnDat 2.1							
Hiperface							
HSPAM / UF, asynchron rotativ	1		1	1	1	1	1
Sensorlos	1		1	1	1	1	1
Feldplatte 2-Draht	1		1	1	1	1	1
Feldplatte 3-Draht	1		1	1	1	1	1
Impulsgeber NAMUR	1		1	✓	1	1	1
Impulsgeber 24 V	1		1	✓	1	1	1
Impulsgeber 5 V	1		1	✓	1	1	1
Digitale Feldplatte / GMR	1		1	1	1	1	1
Fangen							
Stromgeführter Anlauf							
HSBLOCK / FPAM, synchron rotativ				1		1	1
Hall ABC 12 V				1		1	1
Hall ABC 5 V				1		1	1
Messung Phasenspannung				1		1	1
Betriebsarten	1		I	I			
Stromregelung		1					
Geschwindigkeitsmodus 1	1	1	1	1	1	1	1
Profile Velocity Mode							
Interpolierte Lageregelung							
Elektronisches Getriebe							
Sollwert- und Steuerkanäle							
Analoge + digitale Eingänge	1	1	1	1	1	1	1
Serielle Schnittstelle / RS485 / USB	✓	1	✓	✓	✓	✓	✓
SERVOLINK 4	/	1	1	1			
CAN-Bus		✓			1	1	
DNC 8 Byte	1	✓	✓	✓	✓	✓	1
EtherCAT							✓

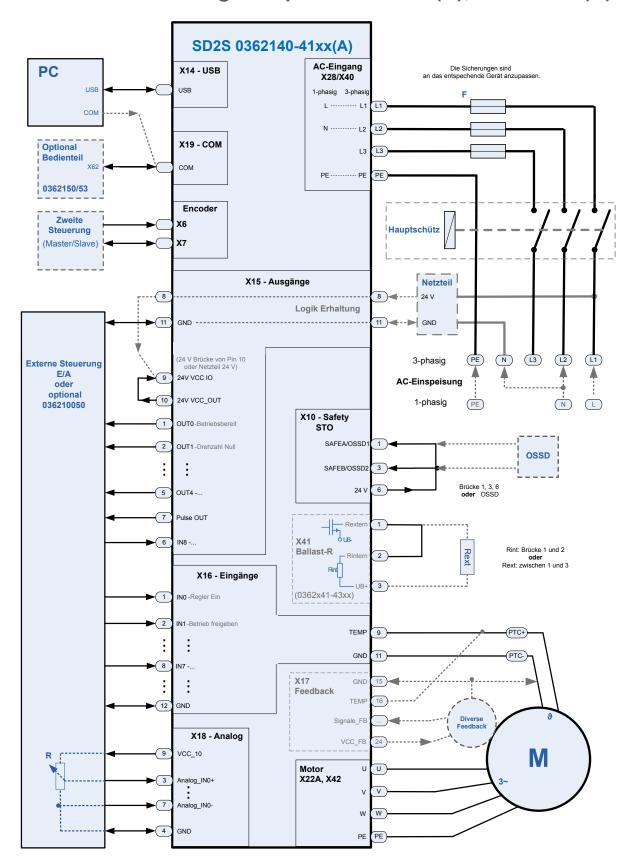
Firmware SD2S mit geregeltem Zwischenkreis (ohne Versionsnummer vxxxxx)	F09005 UF	F09006 SERVO_CAN	F09008 UF_SVC	F09009 UF_HSBLOCK_FPAM	F09010 UF_SVC_CAN	F09011 UF_HSBLOCK_FPAM_CAN	F09012 UF_HSBLOCK_FPAM_ETHERCAT
Interne Sollwerte	\	1	✓	1	✓	1	1
Motorpoti	\	✓	\	✓	\	✓	✓
Encoder 0 / Pulse Direction-Eingang							
Encodernachbildung							
AB Quadratursignale		1		1		1	1
Drehzahlimpulse	✓		1	1	1	1	✓
Sonstiges							
Multiparametersätze	✓		✓	✓	✓	✓	✓
Wicklungserkennung			1		1		
Feldschwächung synchron			1		1		
Stromgesteuerte Rampen			1	1	1	✓	✓
Auswertung Differenzenmesssystem							

Anschlussprinzip

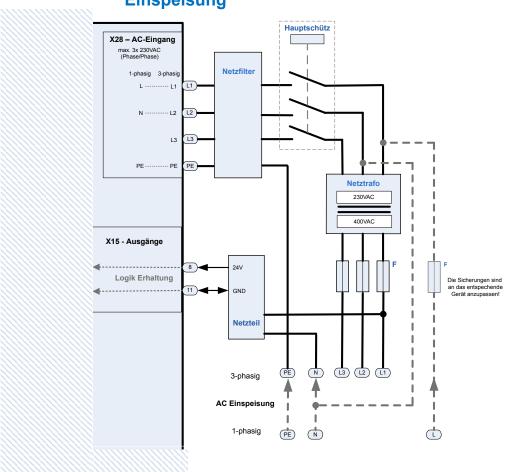


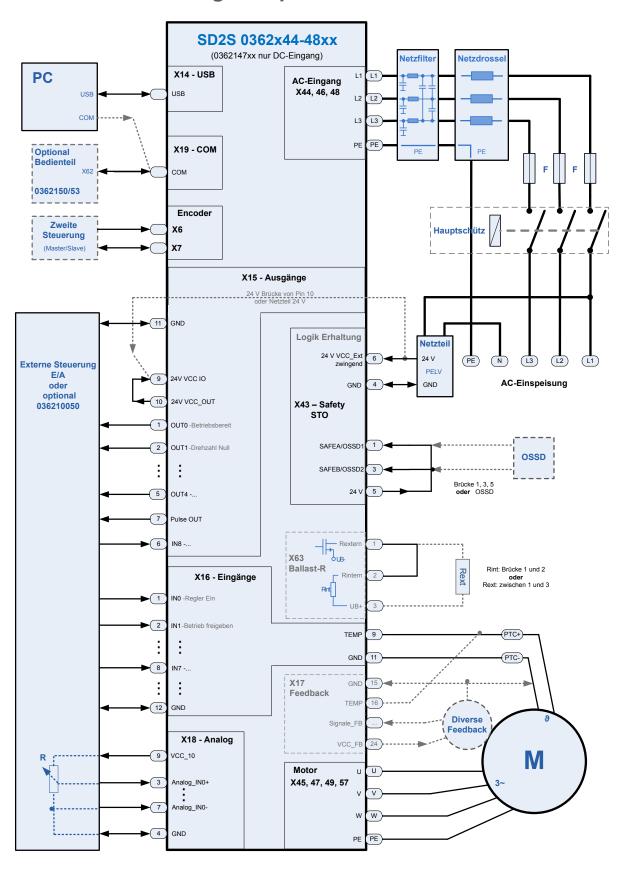
C Anschlussprinzip

Die folgenden Anschlussbilder zeigen beispielhaft die komplette Verdrahtung eines Gerätes.



C.1 Verdrahtungsbeispiel 0362120xx, 0362121xx


C.2 Verdrahtungsbeispiel 0362x40xx(A), 0362x41xx(A)


C.3 Verdrahtungsbeispiel 0362x42xx, 0362x43xx (Besonderheiten der Einspeisung)

SD2S 0362x42-43xx Einspeisung

C.4 Verdrahtungsbeispiel 0362144xx bis 0362x48xx

D Netzabsicherung

Abhängig von Gerätevariante und Einspeisung müssen Sie unterschiedliche Sicherungen für die Netzabsicherung Ihres SD2S-Geräts vorsehen. In der folgenden Tabelle finden Sie passende Netzsicherungen zum Beispiel von Siemens:

		l Ciabanana	passende	Sicherung
Gerätetyp	Einspeisung	I _{Nenn} Sicherung	Siemens SITOR	Bauform
0362120DA	1-phasig	16 A	5SE1 316	NEOZED D01
0362120DC	1-phasig	16 A	5SE1 316	NEOZED D01
0362120EC	1-phasig	16 A	5SE1 316	NEOZED D01
0362x40DA	1-phasig	16 A	5SE1 316	NEOZED D01
0362x40DC(A)	1-phasig	16 A	5SE1 316	NEOZED D01
0362x40EC	1-phasig	16 A	5SE1 316	NEOZED D01
0362x40EF	3-phasig	16 A	5SE1 316	NEOZED D01
0362121EC	1/3-phasig	20 A	5SD4 30	DIAZED DII
0362121IC	1/3-phasig	20 A	5SD4 30	DIAZED DII
0362121EF	3-phasig	16 A	5SE1 316	NEOZED D01
0362121IF	3-phasig	16 A	5SE1 316	NEOZED D01
0362x41EC(A)	1/3-phasig	20 A	5SD4 30	DIAZED DII
0362x41IC	1/3-phasig	20 A	5SD4 30	DIAZED DII
0362x41EF	3-phasig	16 A	5SE1 316	NEOZED D01
0362x41IF	3-phasig	16 A	5SE1 316	NEOZED D01
0362x42DC	1-phasig	16 A	5SE1 316	NEOZED D01
0362x42EC	1-phasig	20 A	5SD4 30	DIAZED DII
0362x42EC	3-phasig	16 A	5SE1 316	NEOZED D01
0362x43EC	1-phasig	20 A	5SD4 30	DIAZED DII
0362x43EC	3-phasig	16 A	5SE1 316	NEOZED D01
0362144EF	3-phasig	30 A	5SD4 80	DIAZED DII
0362x45EF	3-phasig	30 A	5SD4 80	DIAZED DII
0362x45IF	3-phasig	50 A	5SD4 60	DIAZED DIII
0362x46IF	3-phasig	50 A	5SD4 60	DIAZED DIII
0362x46LF	3-phasig	63 A	5SD4 70	DIAZED DIII
0362x48MF	3-phasig	100 A	5SD5 20	DIAZED DIV
0362x48OF	3-phasig	100 A	5SD5 20	DIAZED DIV

E Herstellernachweis

E.1 SIEB & MEYER-Zubehör

Im Folgenden finden Sie alle Zubehörteile für den SD2S, die Sie bei SIEB & MEYER bestellen können.

Hinweis

Beachten Sie die Hinweise in der Dokumentation, welches Zubehör für Ihr Gerät eingesetzt werden kann.

E.1.1 Anschlüsse der Baureihe SD2S

Stecker-/Kabelsätze

SIEB & MEYER-Artikelnummer	Gerätevariante
32299545	0362120xC, 0362x40xC(A)
32299548	0362120xA, 0362x40xA (Niederspannungsgeräte)
32299546	0362x40EF, 0362121xx, 0362x41xx(A), 0362x42EC, 0362x43xx
32299602	0362242DC
32299566	0362144xx
32299565	0362x45xx
32299606	0362x46xx
32299564	0362147xx
32299563	0362x48xx

Ein Steckersatz enthält Gegenstecker für Motoranschluss, Einspeisung, ggf. Ballastwiderstand, E/A-Kontakte und Safety sowie eine passende Schirmanschlussklemme von der Firma Phoenix Contact.

Hinweis

In den Steckersätzen sind keine D-Sub-Gegenstecker für die eingesetzten Messsysteme enthalten.

LWL-Anschlüsse

SIEB & MEYER-Artikelnummer	Beschreibung
12540102	Eingangsbuchse (schwarz)
12540202	Ausgangsbuchse (grau)
32022900	Steckverbinder am Kabel (Toslink F05)
47000001	Polierscheibe für Lichtleiterkabel
47000002	Abisolierzange für Lichtleiterkabel
4700003	Schleifpapier

E.1.2 Bedienteil

SIEB & MEYER-Artikelnummer	Beschreibung	
0362150	Aufsteckbares Bedienteil	
0362153	Bedienteil zur Schaltschrankmontage	
32299567	Schaltschrankbausatz für Bedienteil 0362150	

E.1.3 Ringkern für Motorkabel

SIEB & MEYER-Artikelnummer	Beschreibung	
13163110	R 63/38/25, AI = 15150 nH	

E.1.4 Netzfilter für Umrichter-/Leistungselektronik

Netzfilter der TDK & EPCOS Gruppe

- Netzfilter 1- und 3-phasig
- hohe Dämpfung
- ▶ bedingte FI/RCD-Verträglichkeit

Hinweis

Der Maximalstrom (I_{max}) muss den Vorsicherungen des Gerätes angepasst werden.

Hinweis

Bei Einsatz eines solchen Netzfilters entstehen sehr hohe Ableitströme, da Cy > 1,5 μ F. Folglich ist es nur bedingt verträglich mit einem FI-Schalter.

Unter Angabe der entsprechenden Artikelnummer erhalten Sie das zu Ihrem Gerät passende Netzfilter der "TDK & EPCOS Gruppe" bei SIEB & MEYER:

SIEB & MEYER-Artikelnummer	Nennstrom (I _{Nenn})	Ableitstrom (I _{abl})
35063080 (1-phasig)	20 A	7,9 mA
35063103 (3-phasig)	50 A	15 mA
35063106 (3-phasig)	90 A	18 mA
35063107 (3-phasig)	120 A	18 mA
35063115 (3-phasig)	220 A	17 mA

E.1.5 Netzdrosseln

Hinweis

Wählen Sie die Netzdrossel entsprechend des zu erwartenden Netzphasen-Dauerstroms aus.

Die folgenden Netzdrosseln von der Firma Block sind bei SIEB & MEYER erhältlich:

SIEB & MEYER-Artikelnummer	Beschreibung
13015833	Netzdrossel: 1 × 6 A
13015834	Netzdrossel: 1 × 10 A
13015835	Netzdrossel: 1 ×16 A
13015801	Netzdrossel: 3 × 16 A, uk = 3 %
13015802	Netzdrossel: 3 × 25 A, uk = 3 %
13015803	Netzdrossel: 3 × 35 A, uk = 3 %
13015804	Netzdrossel: 3 × 40 A, uk = 3 %
13015805	Netzdrossel: 3 × 50 A, uk = 3 %
13015808	Netzdrossel: 3 × 80 A, uk = 3 %
13015810	Netzdrossel: 3 × 90 A, uk = 3 %
13015811	Netzdrossel: 3 × 100 A, uk = 3 %
13015812	Netzdrossel: 3 × 180 A, uk = 3 %
13015814	Netzdrossel: 3 × 250 A, uk = 3 %
13015823	Netzdrossel: 3 × 300 A, uk = 3 %
13015825	Netzdrossel: 3 × 500 A, uk = 3 %
13015826	Netzdrossel: 3 × 630 A, uk = 3 %

Hersteller von Netzdrosseln:

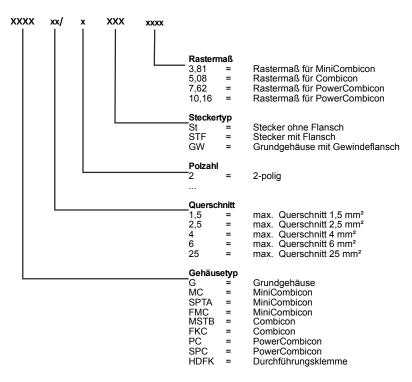
- http://www.block.eu
- http://www.enerdoor.de

E.1.6 USB>RS232/485 Konverter 050201

Optional können Sie zur Gerätekonfiguration einen USB>RS232/485 Konverter bei SIEB & MEYER bestellen. Dieser Umsetzer wurde speziell für die Verstärkerbaureihe SD2x entwickelt. Über ihn können die Geräte mit einem PC ohne RS232- oder RS485-Schnittstelle kommunizieren.

Ein kurzes USB-Kabel wird mit dem Umsetzer mitgeliefert. Ein passendes Verbindungskabel zu den Antriebsverstärkern muss separat bestellt oder selber gebaut werden.

SIEB & MEYER-Artikelnummer	Beschreibung
050201	USB>RS232/485 Konverter
K362103xxxR01 (xxx = Kabellänge in dm)	RS232-Geräteanschlusskabel zum Konverter 050201


Weitere Informationen finden Sie im Dokument "050201 – USB>RS232/485-Konverter".

E.2 Phoenix Contact

http://www.phoenixcontact.com

Bestellcode für Phoenix-Stecker

Hinweis

Beschriftete Stecker können bei SIEB & MEYER bestellt werden.

E.2.1 Überspannungsschutz FLASHTRAB

Phoenix-Artikelnummer	Beschreibung
2905469	Kombiableiter Typ 1+2 special - FLT-SEC-T1+T2-3C-350/25-FM: für Geräte mit 3-phasiger Einspeisung, mit kombiniert verlegtem PE und N in einem Leiter (L1, L2, L3, PEN)
2905470	Kombiableiter Typ 1+2 special - FLT-SEC-T1+T2-3S-350/25-FM: für Geräte mit 3-phasiger Einspeisung, mit separatem PE und N (L1, L2, L3, PE, N)
2907928	Überspannungsschutzgerät Typ 3 - PLT-SEC-T3-230-FM-PT: für Geräte mit 1-phasiger Einspeisung, Nennspannung 230 V AC/DC

E.2.2 Schirmanschlussklemmen

Schirmanschlussklemmen für EMV-Sammelschiene und Motor-/Netzanschluss oder Messsystemanschluss der Geräte

Phoenix-Arti- kelnummer	Name	Anschlussart	Anzugsdrehmo- ment	SD2S mit Befestigungs- möglichkeit am Gehäuse
3025163	SK 8	Aufschrauben (M4)	max. 0,6 Nm	0362144xx bis 0362x48xx ⁽¹⁾
3025176	SK 14	Aufschrauben (M4)	max. 0,8 Nm	0362120xx, 0362x40xx(A)
3025189	SK 20	Aufschrauben (M4)	max. 0,8 Nm	0362121xx, 0362x41xx(A) bis 0362x43xx
3026463	SK 35	Aufschrauben (M5)	1,5 bis 1,8 Nm	_

⁽¹⁾ Die Befestigungslöcher für die Schirmanschlussklemme sind bei älteren Geräte der Serien 0362145xx bis 0362148xx noch nicht vorhanden.

Alternative Klemmen finden Sie bei WAGO (siehe <u>WAGO Schirmanschlussklemmen (S. 198)</u>).

E.3 Toshiba-Anschlüsse für Lichtwellenleiter

http://www.toshiba.com

E.4 WAGO Kontakttechnik

http://www.wago.com

E.4.1 Schirmanschlussklemmen

Schirmanschlussklemmen für EMV-Sammelschiene und Motor-/Netzanschluss der Geräte

WAGO-Artikelnummer	Beschreibung	
791-111	kontaktierbarer Schirmdurchmesser; 5 bis 11 mm; Hmax. 47 mm; 17 mm breit (entspricht SK 14 von Phoenix Contact)	
	kontaktierbarer Schirmdurchmesser; 10 bis 17 mm; Hmax. 63 mm; 23 mm breit (entspricht SK 20 von Phoenix Contact)	

Alternative siehe Phoenix Schirmanschlussklemmen (S. 197)

E.4.2 Träger mit Ableitfuß

WAGO-Artikelnummer	Beschreibung	
790-112	Träger mit Ableitfuß parallel zur Tragschiene (25 mm lang)	
790-114	Träger mit Ableitfuß parallel zur Tragschiene (45 mm lang)	

15 Index

Special characters	E
0362120xx <u>26</u>	Erdung <u>155</u>
0362121xx <u>35</u>	EtherCAT
0362140xx(A) <u>26</u>	Anschluss 125
0362141xx(A) <u>35</u>	LED-Beschreibung 156
0362142DC <u>43</u>	_
0362142EC <u>48</u>	F
0362143xx <u>53</u>	Federkraftanschluss 101
0362144xx <u>57</u>	Fehlermeldungen <u>157</u>
0362145xx <u>61</u>	FI-Schalter (RCD) 16
0362146xx <u>69</u>	Firmware <u>184</u>
0362147xx <u>78</u>	Funktionsübersicht SD2S 24
0362148xx <u>83</u>	
0362240xx <u>26</u>	G
0362241xx(A) <u>35</u>	Gehäuseerdung <u>155</u>
0362242DC <u>43</u>	
0362242EC <u>48</u>	Н
0362243xx <u>53</u>	Herstellernachweis 194
0362245xx <u>61</u>	
0362246xx <u>69</u>	I
0362248xx <u>83</u>	ID-Schalter 102
050201 <u>196</u>	
7-Segment-Anzeige <u>156</u>	K
A	Kabelanforderungen <u>164</u>
Anlaufsperre <u>173</u>	L
В	LED-Statusanzeige <u>156</u>
Betriebszustände 157	Leistungsauslegung <u>169</u>
Blockschaltbild	Leitungsquerschnitte <u>165</u> Lichtleiterkabel
feste Zwischenkreisspannung 20	
geregelte Zwischenkreisspannung	Anschluss <u>114</u> Konfektionierung von Lichtleiterka
<u>ž1</u>	beln mit Steckverbinder 114
C	M
CAN-Schnittstelle 149	Montage <u>98</u>
Click & Lock-Stecker 101	Motorkabel 166

N	X22A – Motor <u>113</u>
	X26 – SERVOLINK 4 IN <u>114</u>
Netzabsicherung <u>193</u> Netzdrosseln <u>164</u>	X27 – SERVOLINK 4 OUT 114
	X28 – Einspeisung 116
Netzfilter 195	X40 – Einspeisung 117
P	X41 – Ext. Ballastwiderstand 117
Push-in-Technik 102	X42 – Motor <u>118</u>
Tusti-iii-Technik <u>102</u>	X43 – 24 V / Safety (STO) <u>119</u>
R	X44 – Einspeisung 119
RJ45-Kabel <u>167</u>	X45 – Motor <u>120</u>
	X46 – Einspeisung <u>120</u>
RS232-Schnittstelle <u>148</u>	X47 – Motor <u>121</u>
S	X48 – Einspeisung 122
Cohirmung Materiahal 151	X49 – Motor <u>122</u>
Schirmung Motorkabel 151 Schnollhaltmoldungen 163	X55 – Fehlerbus <u>123</u>
Schnellhaltmeldungen <u>163</u> SERVOLINK 4-Anschluss <u>114</u>	X56 – Zwischenkreis <u>123</u>
	X57 – Motor <u>123</u>
Statusanzeige <u>156</u> STO (Safe Torque Off) <u>173</u>	X6 – ENC0 <u>102</u>
310 (Sale Tolque Oli) 173	X63 – Ext. Ballastwiderstand <u>124</u>
T	X64 – EtherCAT OUT 125
	X65 – EtherCAT IN <u>125</u>
Typenschild 22	
Typenschild 22	X7 – ENC1/EMU <u>103</u>
Typenschild 22	
	X7 – ENC1/EMU <u>103</u>
U	X7 – ENC1/EMU <u>103</u>
U USB-Kabel <u>167</u>	X7 – ENC1/EMU <u>103</u>
U USB-Kabel <u>167</u>	X7 – ENC1/EMU <u>103</u>
U USB-Kabel <u>167</u>	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V	X7 – ENC1/EMU <u>103</u>
U USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164	X7 – ENC1/EMU <u>103</u>
U USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99	X7 – ENC1/EMU <u>103</u>
U USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X	X7 – ENC1/EMU <u>103</u>
U USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X X10 – Safety (STO) 103	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X X10 – Safety (STO) 103 X14 – USB 104	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X X10 – Safety (STO) 103 X14 – USB 104 X15 – Digital OUT 104	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X X10 – Safety (STO) 103 X14 – USB 104 X15 – Digital OUT 104 X16 – Digital IN 107	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X X10 – Safety (STO) 103 X14 – USB 104 X15 – Digital OUT 104 X16 – Digital IN 107 X17 – Motorfeedback 110	X7 – ENC1/EMU <u>103</u>
USB-Kabel 167 USB>RS232/485 Konverter 196 V Verdrahtungshinweise 164 W Warnmeldungen 162 Wasserkühlung 99 X X10 – Safety (STO) 103 X14 – USB 104 X15 – Digital OUT 104 X16 – Digital IN 107	X7 – ENC1/EMU <u>103</u>